68 research outputs found

    Search-based Model-driven Loop Optimizations for Tensor Contractions

    Get PDF
    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. The Tensor Contraction Engine (TCE) is a high-level program synthesis system that facilitates the generation of high-performance parallel programs from tensor contraction equations. We are developing a new software infrastructure for the TCE that is designed to allow experimentation with optimization algorithms for modern computing platforms, including for heterogeneous architectures employing general-purpose graphics processing units (GPGPUs). In this dissertation, we present improvements and extensions to the loop fusion optimization algorithm, which can be used with cost models, e.g., for minimizing memory usage or for minimizing data movement costs under a memory constraint. We show that our data structure and pruning improvements to the loop fusion algorithm result in significant performance improvements that enable complex cost models being use for large input equations. We also present an algorithm for optimizing the fused loop structure of handwritten code. It determines the regions in handwritten code that are safe to be optimized and then runs the loop fusion algorithm on the dependency graph of the code. Finally, we develop an optimization framework for generating GPGPU code consisting of loop fusion optimization with a novel cost model, tiling optimization, and layout optimization. Depending on the memory available on the GPGPU and the sizes of the tensors, our framework decides which processor (CPU or GPGPU) should perform an operation and where the result should be moved. We present extensive measurements for tuning the loop fusion algorithm, for validating our optimization framework, and for measuring the performance characteristics of GPGPUs. Our measurements demonstrate that our optimization framework outperforms existing general-purpose optimization approaches both on multi-core CPUs and on GPGPUs

    Automatic Parallelization of Tiled Stencil Loop Nests on GPUs

    Full text link
    This thesis attempts to design and implement a compiler framework based on the polyhedral model. The compiler automatically parallelizes loop nests; especially stencil kernels, into efficient GPU code by loop tiling transformations which the polyhedral model describes. To enhance parallel performance, we introduce three practically efficient techniques to process different types of loop nests. The experimental results of our compiler framework have demonstrated that these advanced techniques can outperform previous approaches. Firstly, we aim to find efficient tiling transformations without violating data dependences. How to select a tile's shape and size is an open issue that is performance-critical and influenced by GPU's hardware constraints. We propose an approach to determine the tile shapes out of consideration for improving two-level parallelism of GPUs. The new approach finds appropriate tiling hyperplanes by embedding parallelism-enhancing constraints into the polyhedral model to maximize intra-tile, i.e., intra-SM parallelism. This improves the load balance among the streaming processors (SPs), which execute a wavefront of loop iterations within a tile. We eliminate parallelism-hindering false dependences to optimize inter-tile, i.e., inter-SM parallelism. This improves the load balance among the streaming multiprocessors (SMs), which execute a wavefront of tiles. Furthermore, to avoid combinatorial explosion of tile size's configurations, we present a model-driven approach to automating tile size selection that is performance-critical for loop tiling transformations, especially for DOACROSS loop nests. Our tile size selection model accurately estimates the execution times of tiled loop nests running on GPUs. The selected tile sizes lead to the performance results that are close to the best observed for a range of problem sizes tested. Finally, to address the difficulty and low-performance of parallelizing widely used SOR stencil loop nests, we present a new tiled parallel SOR method, called MLSOR, which admits more efficient data-parallel SIMD execution on GPUs. Unlike the previous two approaches that are dependence-preserving, the basic idea is to algorithmically restructure a stencil kernel based on a non-dependence-preserving parallelization scheme to avoid pipelining for higher parallelism. The new approach can be implemented in compilers through a pattern matching pass to optimize SOR-like DOACROSS loop nests on GPUs

    PIPS Is not (just) Polyhedral Software Adding GPU Code Generation in PIPS

    No full text
    6 pagesInternational audienceParallel and heterogeneous computing are growing in audience thanks to the increased performance brought by ubiquitous manycores and GPUs. However, available programming models, like OPENCL or CUDA, are far from being straightforward to use. As a consequence, several automated or semi-automated approaches have been proposed to automatically generate hardware-level codes from high-level sequential sources. Polyhedral models are becoming more popular because of their combination of expressiveness, compactness, and accurate abstraction of the data-parallel behaviour of programs. These models provide automatic or semi-automatic parallelization and code transformation capabilities that target such modern parallel architectures. PIPS is a quarter-century old source-to-source transformation framework that initially targeted parallel machines but then evolved to include other targets. PIPS uses abstract interpretation on an integer polyhedral lattice to represent program code, allowing linear relation analysis on integer variables in an interprocedural way. The same representation is used for the dependence test and the convex array region analysis. The polyhedral model is also more classically used to schedule code from linear constraints. In this paper, we illustrate the features of this compiler infrastructure on an hypothetical input code, demonstrating the combination of polyhedral and non polyhedral transformations. PIPS interprocedural polyhedral analyses are used to generate data transfers and are combined with non-polyhedral transformations to achieve efficient CUDA code generation

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    Full text link
    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.Comment: 18 pages, 4 figures, accepted for publication in Scientific Programmin

    Correct and efficient accelerator programming

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 13142 “Correct and Efficient Accelerator Programming”. The aim of this Dagstuhl seminar was to bring together researchers from various sub-disciplines of computer science to brainstorm and discuss the theoretical foundations, design and implementation of techniques and tools for correct and efficient accelerator programming
    • …
    corecore