1,799 research outputs found

    Efficient Compilation of a Class of Variational Forms

    Full text link
    We investigate the compilation of general multilinear variational forms over affines simplices and prove a representation theorem for the representation of the element tensor (element stiffness matrix) as the contraction of a constant reference tensor and a geometry tensor that accounts for geometry and variable coefficients. Based on this representation theorem, we design an algorithm for efficient pretabulation of the reference tensor. The new algorithm has been implemented in the FEniCS Form Compiler (FFC) and improves on a previous loop-based implementation by several orders of magnitude, thus shortening compile-times and development cycles for users of FFC.Comment: ACM Transactions on Mathematical Software 33(3), 20 pages (2007

    DOLFIN: Automated Finite Element Computing

    Get PDF
    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code
    • ā€¦
    corecore