315 research outputs found

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

    Get PDF
    Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature

    Multi-objective enhanced memetic algorithm for green job shop scheduling with uncertain times

    Get PDF
    The quest for sustainability has arrived to the manufacturing world, with the emergence of a research field known as green scheduling. Traditional performance objectives now co-exist with energy-saving ones. In this work, we tackle a job shop scheduling problem with the double goal of minimising energy consumption during machine idle time and minimising the project’s makespan. We also consider uncertainty in processing times, modelled with fuzzy numbers. We present a multi-objective optimisation model of the problem and we propose a new enhanced memetic algorithm that combines a multiobjective evolutionary algorithm with three procedures that exploit the problem-specific available knowledge. Experimental results validate the proposed method with respect to hypervolume, -indicator and empirical attaintment functions

    Mixed integer programming and adaptive problem solver learned by landscape analysis for clinical laboratory scheduling

    Full text link
    This paper attempts to derive a mathematical formulation for real-practice clinical laboratory scheduling, and to present an adaptive problem solver by leveraging landscape structures. After formulating scheduling of medical tests as a distributed scheduling problem in heterogeneous, flexible job shop environment, we establish a mixed integer programming model to minimize mean test turnaround time. Preliminary landscape analysis sustains that these clinics-orientated scheduling instances are difficult to solve. The search difficulty motivates the design of an adaptive problem solver to reduce repetitive algorithm-tuning work, but with a guaranteed convergence. Yet, under a search strategy, relatedness from exploitation competence to landscape topology is not transparent. Under strategies that impose different-magnitude perturbations, we investigate changes in landscape structure and find that disturbance amplitude, local-global optima connectivity, landscape's ruggedness and plateau size fairly predict strategies' efficacy. Medium-size instances of 100 tasks are easier under smaller-perturbation strategies that lead to smoother landscapes with smaller plateaus. For large-size instances of 200-500 tasks, extant strategies at hand, having either larger or smaller perturbations, face more rugged landscapes with larger plateaus that impede search. Our hypothesis that medium perturbations may generate smoother landscapes with smaller plateaus drives our design of this new strategy and its verification by experiments. Composite neighborhoods managed by meta-Lamarckian learning show beyond average performance, implying reliability when prior knowledge of landscape is unknown

    HYBRID GENETIC AND PENGUIN SEARCH OPTIMIZATION ALGORITHM (GA-PSEOA) FOR EFFICIENT FLOW SHOP SCHEDULING SOLUTIONS

    Get PDF
    This paper presents a novel hybrid approach, fusing genetic algorithms (GA) and penguin search optimization (PSeOA), to address the flow shop scheduling problem (FSSP). GA utilizes selection, crossover, and mutation inspired by natural selection, while PSeOA emulates penguin foraging behavior for efficient exploration. The approach integrates GA's genetic diversity and solution space exploration with PSeOA's rapid convergence, further improved with FSSP-specific modifications. Extensive experiments validate its efficacy, outperforming pure GA, PSeOA, and other metaheuristics

    Swarm intelligence for scheduling: a review

    Get PDF
    Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization

    Robust multiobjective optimisation for fuzzy job shop problems

    Get PDF
    Abstract In this paper we tackle a variant of the job shop scheduling problem with uncertain task durations modelled as fuzzy numbers. Our goal is to simultaneously minimise the schedule's fuzzy makespan and maximise its robustness. To this end, we consider two measures of solution robustness: a predictive one, prior to the schedule execution, and an empirical one, measured at execution. To optimise both the expected makespan and the predictive robustness of the fuzzy schedule we propose a multiobjective evolutionary algorithm combined with a novel dominance-based tabu search method. The resulting hybrid algorithm is then evaluated on existing benchmark instances, showing its good behaviour and the synergy between its components. The experimental results also serve to analyse the goodness of the predictive robustness measure, in terms of its correlation with simulations of the empirical measure.This research has been supported by the Spanish Government under Grants FEDER TIN2013-46511-C2-2-P and MTM2014-55262-P

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges
    corecore