24 research outputs found

    An emotion and memory model for social robots : a long-term interaction

    Get PDF
    In this thesis, we investigate the role of emotions and memory in social robotic companions. In particular, our aim is to study the effect of an emotion and memory model towards sustaining engagement and promoting learning in a long-term interaction. Our Emotion and Memory model was based on how humans create memory under various emotional events/states. The model enabled the robot to create a memory account of user's emotional events during a long-term child-robot interaction. The robot later adapted its behaviour through employing the developed memory in the following interactions with the users. The model also had an autonomous decision-making mechanism based on reinforcement learning to select behaviour according to the user preference measured through user's engagement and learning during the task. The model was implemented on the NAO robot in two different educational setups. Firstly, to promote user's vocabulary learning and secondly, to inform how to calculate area and perimeter of regular and irregular shapes. We also conducted multiple long-term evaluations of our model with children at the primary schools to verify its impact on their social engagement and learning. Our results showed that the behaviour generated based on our model was able to sustain social engagement. Additionally, it also helped children to improve their learning. Overall, the results highlighted the benefits of incorporating memory during child-Robot Interaction for extended periods of time. It promoted personalisation and reflected towards creating a child-robot social relationship in a long-term interaction

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    Autonomous system control in unknown operating conditions

    Get PDF
    Autonomous systems have become an interconnected part of everyday life with the recent increases in computational power available for both onboard computers and offline data processing. The race by car manufacturers for level 5 (full) autonomy in self-driving cars is well underway and new flying taxi service startups are emerging every week, attracting billions in investments. Two main research communities, Optimal Control and Reinforcement Learning stand out in the field of autonomous systems, each with a vastly different perspective on the control problem. Controllers from the optimal control community are based on models and can be rigorously analyzed to ensure the stability of the system is maintained under certain operating conditions. Learning-based control strategies are often referred to as model-free and typically involve training a neural network to generate the required control actions through direct interactions with the system. This greatly reduces the design effort required to control complex systems. One common problem both learning- and model- based control solutions face is the dependency on a priori knowledge about the system and operating conditions such as possible internal component failures and external environmental disturbances. It is not possible to consider every possible operating scenario an autonomous system can encounter in the real world at design time. Models and simulators are approximations of reality and can only be created for known operating conditions. Autonomous system control in unknown operating conditions, where no a priori knowledge exists, is still an open problem for both communities and no control methods currently exist for such situations. Multiple model adaptive control is a modular control framework that divides the control problem into supervisory and low-level control, which allows for the combination of existing learning- and model-based control methods to overcome the disadvantages of using only one of these. The contributions of this thesis consist of five novel supervisory control architectures, which have been empirically shown to improve a system’s robustness to unknown operating conditions, and a novel low- level controller tuning algorithm that can reduce the number of required controllers compared to traditional tuning approaches. The presented methods apply to any autonomous system that can be controlled using model-based controllers and can be integrated alongside existing fault-tolerant control systems to improve robustness to unknown operating conditions. This impacts autonomous system designers by providing novel control mechanisms to improve a system’s robustness to unknown operating conditions

    Active Methodologies for the Promotion of Mathematical Learning

    Get PDF
    In recent years, the methodologies of teaching have been in a process of transition. Multiple active methodologies have proliferated, with the aim of changing the concept we have had of teaching so far. These advocate for a student who plays a leading role in the process of building learning, while the teacher acts as a figure who facilitates and glimpses the paths to learning. In order to be able to carry out this type of teaching in an optimal way, it is necessary for the teaching and research community to be correctly trained in its pedagogical principles and in the tools that boost its implementation. Among these principles and tools, it is of vital importance that information and communication technologies (ICT) be adequately handled. The use of active methodologies (project-based learning, problem-based learning, service learning, flipped classroom, mobile learning, etc.) or innovative pedagogical approaches (simulation, role-playing, gamification, etc.) promotes an improvement in the motivation of students as well as their skills. This aspect is especially important in the area of mathematics, whose contents are characterized by their abstraction, thus highlighting the need for its dynamization in classrooms of different educational stages
    corecore