756 research outputs found

    The Combined Use of Optical and SAR Data for Large Area Impervious Surface Mapping

    Get PDF
    One of the megatrends marking our societies today is the rapid growth of urban agglomerations which is accompanied by a continuous increase of impervious surface (IS) cover. In light of this, accurate measurement of urban IS cover as an indicator for both, urban growth and environmental quality is essential for a wide range of urban ecosystems studies. The aim of this work is to present an approach based on both optical and SAR data in order to quantify urban impervious surface as a continuous variable on regional scales. The method starts with the identification of relevant areas by a semi automated detection of settlement areas on the basis of single-polarized TerraSAR-X data. Thereby the distinct texture and the high density of dihedral corner reflectors prevailing in build-up areas are utilized to automatically delineate settlement areas by the use of an object-based image classification method. The settlement footprints then serve as reference area for the impervious surface estimation based on a Support Vector Regression (SVR) model which relates percent IS to spectral reflectance values. The training procedure is based on IS values derived from high resolution QuickBird data. The developed method is applied to SPOT HRG data from 2005 and 2009 covering almost the whole are of Can Tho Province in the Mekong Delta, Vietnam. In addition, a change detection analysis was applied in order to test the suitability of the modelled IS results for the automated detection of constructional developments within urban environments. Overall accuracies between 84 % and 91% for the derived settlement footprints and absolute mean errors below 15% for the predicted versus training percent IS values prove the suitability of the approach for an area-wide mapping of impervious surfaces thereby exclusively focusing on settlement areas on the basis of remotely sensed image data

    Quantifying the physical composition of urban morphology throughout Wales based on the time series (1989-2011) analysis of Landsat TM/ETM+ images and supporting GIS data

    Get PDF
    Knowledge of impervious surface areas (ISA) and on their changes in magnitude, location, geometry and morphology over time is significant for a range of practical applications and research alike from local to global scales. Despite this, use of Earth Observation (EO) technology in mapping ISAs within some European Union (EU) countries, such as the United Kingdom (UK), is to some extent scarce. In the present study, a combination of methods is proposed for mapping ISA based on freely distributed EO imagery from Landsat TM/ETM+ sensors. The proposed technique combines a traditional classifier and a linear spectral mixture analysis (LSMA) with a series of Landsat TM/ETM+ images to extract ISA. Selected sites located in Wales, UK, are used for demonstrating the capability of the proposed method. The Welsh study areas provided a unique setting in detecting largely dispersed urban morphology within an urban-rural frontier context. In addition, an innovative method for detecting clouds and cloud shadow layers for the full area estimation of ISA is also presented herein. The removal and replacement of clouds and cloud shadows, with underlying materials is further explained. Aerial photography with a spatial resolution of 0.4 m, acquired over the summer period in 2005 was used for validation purposes. Validation of the derived products indicated an overall ISA detection accuracy in the order of ~97%. The latter was considered as very satisfactory and at least comparative, if not somehow better, to existing ISA products provided on a national level. The hybrid method for ISA extraction proposed here is important on a local scale in terms of moving forward into a biennial program for the Welsh Government. It offers a much less subjectively static and more objectively dynamic estimation of ISA cover in comparison to existing operational products already available, improving the current estimations of international urbanization and soil sealing. Findings of our study provide important assistance towards the development of relevant EO-based products not only inaugurate to Wales alone, but potentially allowing a cost-effective and consistent long term monitoring of ISA at different scales based on EO technology

    Advances in remote sensing applications for urban sustainability

    Get PDF
    Abstract: It is essential to monitor urban evolution at spatial and temporal scales to improve our understanding of the changes in cities and their impact on natural resources and environmental systems. Various aspects of remote sensing are routinely used to detect and map features and changes on land and sea surfaces, and in the atmosphere that affect urban sustainability. We provide a critical and comprehensive review of the characteristics of remote sensing systems, and in particular the trade-offs between various system parameters, as well as their use in two key research areas: (a) issues resulting from the expansion of urban environments, and (b) sustainable urban development. The analysis identifies three key trends in the existing literature: (a) the integration of heterogeneous remote sensing data, primarily for investigating or modelling urban environments as a complex system, (b) the development of new algorithms for effective extraction of urban features, and (c) the improvement in the accuracy of traditional spectral-based classification algorithms for addressing the spectral heterogeneity within urban areas. Growing interests in renewable energy have also resulted in the increased use of remote sensing—for planning, operation, and maintenance of energy infrastructures, in particular the ones with spatial variability, such as solar, wind, and geothermal energy. The proliferation of sustainability thinking in all facets of urban development and management also acts as a catalyst for the increased use of, and advances in, remote sensing for urban applications

    Breaking new ground in mapping human settlements from space -The Global Urban Footprint-

    Full text link
    Today 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (∌12m\sim12 m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. Generally, the GUF layer achieves an overall absolute accuracy of about 85\%, with observed minima around 65\% and maxima around 98 \%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8 arcsec (∌84m\sim84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation or vulnerability assessment

    Multisource Remote Sensing based Impervious Surface Mapping

    Full text link
    Impervious surface (IS) not only serves as a key indicator of urbanization, but also affects the micro-ecosystem. Therefore, it is essential to monitor IS distribution timely and accurately. Remote sensing is an effective approach as it can provide straightforward and consistent information over large area with low cost. This thesis integrates multi-source remote sensing data to interpretate urban patterns and provide more reliable IS mapping results. Registration of optical daytime and nighttime lights (NTL) data is developed in the first contribution. An impervious surface based optical-to-NTL image registration algorithm with iterative blooming effect reduction (IS_iBER) algorithm is proposed. This coarse-to-fine procedure investigates the correlation between optical and NTL features. The iterative registration and blooming effect reduction method obtains precise matching results and reduce the spatial extension of NTL. Considering the spatial transitional nature of urban-rural fringes (URF) areas, the second study proposed approach for URF delineation, namely optical and nighttime lights (NTL) data based multi-scale URF (msON_URF).The landscape heterogeneity and development vitality derived from optical and NTL features are analyzed at a series of scales to illustrate the urban-URF-rural pattern. Results illustrate that msON_URF is effective and practical for not only concentric, but also polycentric urban patterns. The third study proposes a nighttime light adjusted impervious surface index (NAISI) to detect IS area. Parallel to baseline subtraction approaches, NAISI takes advantage of features, rather than spectral band information to map IS. NAISI makes the most of independence between NTL-ISS and pervious surface to address the high spectral similarity between IS and bare soil in optical image. An optical and NTL based spectral mixture analysis (ON_SMA) is proposed to achieve sub-pixel IS mapping result in the fourth study. It integrates characteristics of optical and NTL imagery to adaptively select local endmembers. Results illustrate the proposed method yields effective improvement and highlight the potential of NTL data in IS mapping. In the fifth study, GA-SVM IS mapping algorithm is investigated with introduction of the achieved urban-URF-rural spatial structure. The combination of optical, NTL and SAR imagery is discussed. GA is implemented for feature selection and parameter optimization in each urban scenario

    Mapping impervious surfaces with the integrated use of Landsat Thematic Mapper and radar data: a case study in an urban-rural landscape in the Brazilian Amazon.

    Get PDF
    This research explored the integrated use of Landsat Thematic Mapper (TM) and radar (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) data for mapping impervious surface distribution to examine the roles of radar data with different spatial resolutions and wavelengths. The wavelet-merging technique was used to merge TM and radar data to generate a new dataset. A constrained least-squares solution was used to unmix TM multispectral data and multisensor fusion images to four fraction images (high-albedo, low-albedo, vegetation, and soil). The impervious surface image was then extracted from the high-albedo and low-albedo fraction images. QuickBird imagery was used to develop an impervious surface image for use as reference data to evaluate the results from TM and fusion images. This research indicated that increasing spatial resolution by multisensor fusion improved spatial patterns of impervious surface distribution, but cannot significantly improve the statistical area accuracy. This research also indicated that the fusion image with 10-m spatial resolution was suitable for mapping impervious surface spatial distribution, but TM multispectral image with 30 m was too coarse in a complex urban?rural landscape. On the other hand, this research showed that no significant difference in improving impervious surface mapping performance by using either PALSAR L-band or RADARSAT C-band data with the same spatial resolution when they were used for multi-sensor fusion with the wavelet-based method

    ELULC-10, a 10 m European land use and land cover map using Sentinel and landsat data in Google Earth Engine

    Get PDF
    Land Use/Land Cover (LULC) maps can be effectively produced by cost-effective and frequent satellite observations. Powerful cloud computing platforms are emerging as a growing trend in the high utilization of freely accessible remotely sensed data for LULC mapping over large-scale regions using big geodata. This study proposes a workflow to generate a 10 m LULC map of Europe with nine classes, ELULC-10, using European Sentinel-1/-2 and Landsat-8 images, as well as the LUCAS reference samples. More than 200 K and 300 K of in situ surveys and images, respectively, were employed as inputs in the Google Earth Engine (GEE) cloud computing platform to perform classification by an object-based segmentation algorithm and an Artificial Neural Network (ANN). A novel ANN-based data preparation was also presented to remove noisy reference samples from the LUCAS dataset. Additionally, the map was improved using several rule-based post-processing steps. The overall accuracy and kappa coefficient of 2021 ELULC-10 were 95.38% and 0.94, respectively. A detailed report of the classification accuracies was also provided, demonstrating an accurate classification of different classes, such as Woodland and Cropland. Furthermore, rule-based post processing improved LULC class identifications when compared with current studies. The workflow could also supply seasonal, yearly, and change maps considering the proposed integration of complex machine learning algorithms and large satellite and survey data.Peer ReviewedPostprint (published version

    A Comparison of Different Machine Learning Algorithms in the Classification of Impervious Surfaces: Case Study of the Housing Estate Fort Bema in Warsaw (Poland)

    Get PDF
    The aim of this study is to extract impervious surfaces and show their spatial distribution, using different machine learning algorithms. For this purpose, geoprocessing and remote sensing techniques were used and three classification methods for digital images were compared, namely Support Vector Machines (SVM), Maximum Likelihood (ML) and Random Trees (RT) classifiers. The study area is one of the most prestigious and the largest housing estates in Warsaw (Poland), the Fort Bema housing complex, which is also an exemplary model for hydrological solutions. The study was prepared on the Geographic Information System platform (GIS) using aerial optical images, orthorectified and thus provided with a suitable coordinate system. The use of these data is therefore supported by the accuracy of the resulting infrared channel product with a pixel size of 0.25 m, making the results much more accurate compared to satellite imagery. The results of the SVM, ML and RT classifiers were compared using the confusion matrix, accuracy (Root Mean Square Error /RMSE/) and kappa index. This showed that the three algorithms were able to successfully discriminate between targets. Overall, the three classifiers had errors, but specifically for impervious surfaces, the highest accuracy was achieved with the SVM classifier (the highest percentage of overall accuracy), followed by ML and RT with 91.51%, 91.35% and 84.52% of the results, respectively. A comparison of the visual results and the confusion matrix shows that although visually the RT method appears to be the most detailed classification into pervious and impervious surfaces, the results were not always correct, e.g., water/shadow was detected as an impervious surface. The NDVI index was also mapped for the same spatial study area and its application in the evaluation of pervious surfaces was explained. The results obtained with the GIS platform, presented in this paper, provide a better understanding of how these advanced classifiers work, which in turn can provide insightful guidance for their selection and combination in real-world applications. The paper also provides an overview of the main works/studies dealing with impervious surface mapping, with different methods for their assessment (including the use of conventional remote sensing, NDVI, multisensory and cross-source data, ‘social sensing’ and classification methods such as SVM, ML and RT), as well as an overview of the research results
    • 

    corecore