246 research outputs found

    Correlation Clustering with Low-Rank Matrices

    Full text link
    Correlation clustering is a technique for aggregating data based on qualitative information about which pairs of objects are labeled 'similar' or 'dissimilar.' Because the optimization problem is NP-hard, much of the previous literature focuses on finding approximation algorithms. In this paper we explore how to solve the correlation clustering objective exactly when the data to be clustered can be represented by a low-rank matrix. We prove in particular that correlation clustering can be solved in polynomial time when the underlying matrix is positive semidefinite with small constant rank, but that the task remains NP-hard in the presence of even one negative eigenvalue. Based on our theoretical results, we develop an algorithm for efficiently "solving" low-rank positive semidefinite correlation clustering by employing a procedure for zonotope vertex enumeration. We demonstrate the effectiveness and speed of our algorithm by using it to solve several clustering problems on both synthetic and real-world data

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H∞\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    A Provable Defense for Deep Residual Networks

    Full text link
    We present a training system, which can provably defend significantly larger neural networks than previously possible, including ResNet-34 and DenseNet-100. Our approach is based on differentiable abstract interpretation and introduces two novel concepts: (i) abstract layers for fine-tuning the precision and scalability of the abstraction, (ii) a flexible domain specific language (DSL) for describing training objectives that combine abstract and concrete losses with arbitrary specifications. Our training method is implemented in the DiffAI system

    Robust explicit model predictive control for hybrid linear systems with parameter uncertainties

    Full text link
    Explicit model-predictive control (MPC) is a widely used control design method that employs optimization tools to find control policies offline; commonly it is posed as a semi-definite program (SDP) or as a mixed-integer SDP in the case of hybrid systems. However, mixed-integer SDPs are computationally expensive, motivating alternative formulations, such as zonotope-based MPC (zonotopes are a special type of symmetric polytopes). In this paper, we propose a robust explicit MPC method applicable to hybrid systems. More precisely, we extend existing zonotope-based MPC methods to account for multiplicative parametric uncertainty. Additionally, we propose a convex zonotope order reduction method that takes advantage of the iterative structure of the zonotope propagation problem to promote diagonal blocks in the zonotope generators and lower the number of decision variables. Finally, we developed a quasi-time-free policy choice algorithm, allowing the system to start from any point on the trajectory and avoid chattering associated with discrete switching of linear control policies based on the current state's membership in state-space regions. Last but not least, we verify the validity of the proposed methods on two experimental setups, varying physical parameters between experiments

    Zonotopic set-membership state estimation for discrete-time descriptor LPV systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This technical note proposes a novel set-membership state estimation approach based on zonotopes for discrete-time descriptor linear parameter-varying systems. The consistency test between the system model and measured outputs is implemented to construct a parameterized intersection zonotope with respect to a correction matrix. With a defined zonotope minimization criterion, we propose a novel offline optimization problem to obtain the optimal correction matrix. In addition, with the proposed approach, an adaptive bound of the radius of the intersection zonotope is also provided. Finally, a case study with a truck-trailer system is shown to illustrate the proposed approach.Peer ReviewedPostprint (author's final draft

    Reachability Analysis and Safety Verification of Neural Feedback Systems via Hybrid Zonotopes

    Full text link
    Hybrid zonotopes generalize constrained zonotopes by introducing additional binary variables and possess some unique properties that make them convenient to represent nonconvex sets. This paper presents novel hybrid zonotope-based methods for the reachability analysis and safety verification of neural feedback systems. Algorithms are proposed to compute the input-output relationship of each layer of a feedforward neural network, as well as the exact reachable sets of neural feedback systems. In addition, a sufficient and necessary condition is formulated as a mixed-integer linear program to certify whether the trajectories of a neural feedback system can avoid unsafe regions. The proposed approach is shown to yield a formulation that provides the tightest convex relaxation for the reachable sets of the neural feedback system. Complexity reduction techniques for the reachable sets are developed to balance the computation efficiency and approximation accuracy. Two numerical examples demonstrate the superior performance of the proposed approach compared to other existing methods.Comment: 8 pages, 4 figure
    • …
    corecore