182 research outputs found

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework

    AM-FM Analysis of Structural and Functional Magnetic Resonance Images

    Get PDF
    This thesis proposes the application of multi-dimensional Amplitude-Modulation Frequency-Modulation (AM-FM) methods to magnetic resonance images (MRI). The basic goal is to provide a framework for exploring non-stationary characteristics of structural and functional MRI (sMRI and fMRI). First, we provide a comparison framework for the most popular AM-FM methods using different filterbank configurations that includes Gabor, Equirriple and multi-scale directional designs. We compare the performance and robustness to Gaussian noise using synthetic FM image examples. We show that the multi-dimensional quasi-local method (QLM) with an equiripple filterbank gave the best results in terms of instantaneous frequency (IF) estimation. We then apply the best performing AM-FM method to sMRI to compute the 3D IF features. We use a t-test on the IF magnitude for each voxel to find evidence of significant differences between healthy controls and patients diagnosed with schizophrenia (n=353) can be found in the IF. We also propose the use of the instantaneous phase (IP) as a new feature for analyzing fMRI images. Using principal component analysis and independent component analysis on the instantaneous phase from fMRI, we built spatial maps and identified brain regions that are biologically coherent with the task performed by the subject. This thesis provides the first application of AM-FM models to fMRI and sMRI

    Texture representation using wavelet filterbanks

    Get PDF
    Texture analysis is a fundamental issue in image analysis and computer vision. While considerable research has been carried out in the texture analysis domain, problems relating to texture representation have been addressed only partially and active research is continuing. The vast majority of algorithms for texture analysis make either an explicit or implicit assumption that all images are captured under the same measurement conditions, such as orientation and illumination. These assumptions are often unrealistic in many practical applications;This dissertation addresses the viewpoint-invariance problem in texture classification by introducing a rotated wavelet filterbank. The proposed filterbank, in conjunction with a standard wavelet filterbank, provides better freedom of orientation tuning for texture analysis. This allows one to obtain texture features that are invariant with respect to texture rotation and linear grayscale transformation. In this study, energy estimates of channel outputs that are commonly used as texture features in texture classification are transformed into a set of viewpoint-invariant features. Texture properties that have a physical connection with human perception are taken into account in the transformation of the energy estimates;Experiments using natural texture image sets that have been used for evaluating other successful approaches were conducted in order to facilitate comparison. We observe that the proposed feature set outperformed methods proposed by others in the past. A channel selection method is also proposed to minimize the computational complexity and improve performance in a texture segmentation algorithm. Results demonstrating the validity of the approach are presented using experimental ultrasound tendon images

    Fingerprint Matching using Moments and Moment Invariants

    Get PDF

    Fingerprint Matching using Moments and Moment Invariants

    Get PDF

    Methods for multi-spectral image fusion: identifying stable and repeatable information across the visible and infrared spectra

    Get PDF
    Fusion of images captured from different viewpoints is a well-known challenge in computer vision with many established approaches and applications; however, if the observations are captured by sensors also separated by wavelength, this challenge is compounded significantly. This dissertation presents an investigation into the fusion of visible and thermal image information from two front-facing sensors mounted side-by-side. The primary focus of this work is the development of methods that enable us to map and overlay multi-spectral information; the goal is to establish a combined image in which each pixel contains both colour and thermal information. Pixel-level fusion of these distinct modalities is approached using computational stereo methods; the focus is on the viewpoint alignment and correspondence search/matching stages of processing. Frequency domain analysis is performed using a method called phase congruency. An extensive investigation of this method is carried out with two major objectives: to identify predictable relationships between the elements extracted from each modality, and to establish a stable representation of the common information captured by both sensors. Phase congruency is shown to be a stable edge detector and repeatable spatial similarity measure for multi-spectral information; this result forms the basis for the methods developed in the subsequent chapters of this work. The feasibility of automatic alignment with sparse feature-correspondence methods is investigated. It is found that conventional methods fail to match inter-spectrum correspondences, motivating the development of an edge orientation histogram (EOH) descriptor which incorporates elements of the phase congruency process. A cost function, which incorporates the outputs of the phase congruency process and the mutual information similarity measure, is developed for computational stereo correspondence matching. An evaluation of the proposed cost function shows it to be an effective similarity measure for multi-spectral information

    CTex - an adaptive unsupervised segmentation algorithm based on color-texture coherence

    Get PDF
    This paper presents the development of an unsupervised image segmentation framework (referred to as CTex) that is based on the adaptive inclusion of color and texture in the process of data partition. An important contribution of this work consists of a new formulation for the extraction of color features that evaluates the input image in a multispace color representation. To achieve this, we have used the opponent characteristics of the RGB and YIQ color spaces where the key component was the inclusion of the self organizing map (SOM) network in the computation of the dominant colors and estimation of the optimal number of clusters in the image. The texture features are computed using a multichannel texture decomposition scheme based on Gabor filtering. The major contribution of this work resides in the adaptive integration of the color and texture features in a compound mathematical descriptor with the aim of identifying the homogenous regions in the image. This integration is performed by a novel adaptive clustering algorithm that enforces the spatial continuity during the data assignment process. A comprehensive qualitative and quantitative performance evaluation has been carried out and the experimental results indicate that the proposed technique is accurate in capturing the color and texture characteristics when applied to complex natural images

    Mean Oriented Riesz Features for Micro Expression Classification

    Get PDF
    Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of a second. This kind of facial expressions usually occurs in high stake situations and is considered to reflect a human's real intent. There has been some interest in micro-expression analysis, however, a great majority of the methods are based on classically established computer vision methods such as local binary patterns, histogram of gradients and optical flow. A novel methodology for micro-expression recognition using the Riesz pyramid, a multi-scale steerable Hilbert transform is presented. In fact, an image sequence is transformed with this tool, then the image phase variations are extracted and filtered as proxies for motion. Furthermore, the dominant orientation constancy from the Riesz transform is exploited to average the micro-expression sequence into an image pair. Based on that, the Mean Oriented Riesz Feature description is introduced. Finally the performance of our methods are tested in two spontaneous micro-expressions databases and compared to state-of-the-art methods
    corecore