14 research outputs found

    Open-ended Search through Minimal Criterion Coevolution

    Get PDF
    Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward artifacts based on their proximity to an optimization target, and terminate upon solution space convergence. Some recent studies take a different approach, capitalizing on the disconnect between mainstream methods in artificial intelligence and the field\u27s biological inspirations. Natural evolution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are decidedly non-convergent. This new class of non-objective algorithms induce a divergent search by rewarding solutions according to their novelty with respect to prior discoveries. While the diversity of resulting innovations exhibit marked parallels to natural evolution, the methods by which search is driven remain unnatural. In particular, nature has no need to characterize and enforce novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevolutionary context where two populations interact, finding novel ways to satisfy their reproductive constraint with respect to each other. Among the contributions of this dissertation, this approach, called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validating MCC\u27s propensity for open-ended discovery. A more natural method of diversity preservation through resource limitation (4) is introduced and shown to maintain population diversity without comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain (5) where it coevolves increasingly complex bodies with brain controllers to achieve principled locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework for the continual production of open-ended dynamics without the need for a characterization of behavioral novelty

    Evolving Spiking Neural Networks with NEAT

    Get PDF
    Spiking neural networks (SNNs) attempt to computationally model biological neurons. While similar to artificial neural networks (ANNs), SNNs preserve the temporal and binary aspects of neurons. Computational evolution is also a biologically inspired computing method, and it has been used to evolve neural networks. NeuroEvolution of Augmenting Topologies (NEAT) is a method to simultaneously evolve the structure and weights of a ANNs. In this work, I apply the NEAT algorithm to SNNs. I compare the performance of ANNs evolved with NEAT and SNNs evolved with NEAT on XOR, a cosine function, and the single pole balancing problem. Multiple values are used for the compatibility threshold (3 options), compatibility weight coefficient (2 options), compatibility disjoint coefficient (2 options), and spiking threshold (2 options). On the XOR problem, 15 SNNs with different parameter combinations found solutions on all five test repetitions while only two ANN parameter combinations did. On the cosine problem, only one SNN parameter combination found a solution on every repetition, but all ANNs did. However, the successful SNNs appeared to capture more of the nonlinearity of the cosine curve than the ANNs. On the single pole balancing problem, no SNNs found any solution while many ANNs were able to find solutions on multiple repetitions. The results indicate that SNNs evolved with NEAT can solve and perform comparably to ANNs evolved with NEAT on some problems

    Natural Selection, Adaptive Evolution and Diversity in Computational Ecosystems

    Get PDF
    The central goal of this thesis is to provide additional criteria towards implementing open-ended evolution in an artificial system. Methods inspired by biological evolution are frequently applied to generate autonomous agents too complex to design by hand. Despite substantial progress in the area of evolutionary computation, additional efforts are needed to identify a coherent set of requirements for a system capable of exhibiting open-ended evolutionary dynamics. The thesis provides an extensive discussion of existing models and of the major considerations for designing a computational model of evolution by natural selection. Thus, the work in this thesis constitutes a further step towards determining the requirements for such a system and introduces a concrete implementation of an artificial evolution system to evaluate the developed suggestions. The proposed system improves upon existing models with respect to easy interpretability of agent behaviour, high structural freedom, and a low-level sensor and effector model to allow numerous long-term evolutionary gradients. In a series of experiments, the evolutionary dynamics of the system are examined against the set objectives and, where appropriate, compared with existing systems. Typical agent behaviours are introduced to convey a general overview of the system dynamics. These behaviours are related to properties of the respective agent populations and their evolved morphologies. It is shown that an intuitive classification of observed behaviours coincides with a more formal classification based on morphology. The evolutionary dynamics of the system are evaluated and shown to be unbounded according to the classification provided by Bedau and Packard’s measures of evolutionary activity. Further, it is analysed how observed behavioural complexity relates to the complexity of the agent-side mechanisms subserving these behaviours. It is shown that for the concrete definition of complexity applied, the average complexity continually increases for extended periods of evolutionary time. In combination, these two findings show how the observed behaviours are the result of an ongoing and lasting adaptive evolutionary process as opposed to being artifacts of the seeding process. Finally, the effect of variation in the system on the diversity of evolved behaviour is investigated. It is shown that coupling individual survival and reproductive success can restrict the available evolutionary trajectories in more than the trivial sense of removing another dimension, and conversely, decoupling individual survival from reproductive success can increase the number of evolutionary trajectories. The effect of different reproductive mechanisms is contrasted with that of variation in environmental conditions. The diversity of evolved strategies turns out to be sensitive to the reproductive mechanism while being remarkably robust to the variation of environmental conditions. These findings emphasize the importance of being explicit about the abstractions and assumptions underlying an artificial evolution system, particularly if the system is intended to model aspects of biological evolution

    Novel approaches to cooperative coevolution of heterogeneous multiagent systems

    Get PDF
    Tese de doutoramento, InformĂĄtica (Engenharia InformĂĄtica), Universidade de Lisboa, Faculdade de CiĂȘncias, 2017Heterogeneous multirobot systems are characterised by the morphological and/or behavioural heterogeneity of their constituent robots. These systems have a number of advantages over the more common homogeneous multirobot systems: they can leverage specialisation for increased efficiency, and they can solve tasks that are beyond the reach of any single type of robot, by combining the capabilities of different robots. Manually designing control for heterogeneous systems is a challenging endeavour, since the desired system behaviour has to be decomposed into behavioural rules for the individual robots, in such a way that the team as a whole cooperates and takes advantage of specialisation. Evolutionary robotics is a promising alternative that can be used to automate the synthesis of controllers for multirobot systems, but so far, research in the field has been mostly focused on homogeneous systems, such as swarm robotics systems. Cooperative coevolutionary algorithms (CCEAs) are a type of evolutionary algorithm that facilitate the evolution of control for heterogeneous systems, by working over a decomposition of the problem. In a typical CCEA application, each agent evolves in a separate population, with the evaluation of each agent depending on the cooperation with agents from the other coevolving populations. A CCEA is thus capable of projecting the large search space into multiple smaller, and more manageable, search spaces. Unfortunately, the use of cooperative coevolutionary algorithms is associated with a number of challenges. Previous works have shown that CCEAs are not necessarily attracted to the global optimum, but often converge to mediocre stable states; they can be inefficient when applied to large teams; and they have not yet been demonstrated in real robotic systems, nor in morphologically heterogeneous multirobot systems. In this thesis, we propose novel methods for overcoming the fundamental challenges in cooperative coevolutionary algorithms mentioned above, and study them in multirobot domains: we propose novelty-driven cooperative coevolution, in which premature convergence is avoided by encouraging behavioural novelty; and we propose Hyb-CCEA, an extension of CCEAs that places the team heterogeneity under evolutionary control, significantly improving its scalability with respect to the team size. These two approaches have in common that they take into account the exploration of the behaviour space by the evolutionary process. Besides relying on the fitness function for the evaluation of the candidate solutions, the evolutionary process analyses the behaviour of the evolving agents to improve the effectiveness of the evolutionary search. The ultimate goal of our research is to achieve general methods that can effectively synthesise controllers for heterogeneous multirobot systems, and therefore help to realise the full potential of this type of systems. To this end, we demonstrate the proposed approaches in a variety of multirobot domains used in previous works, and we study the application of CCEAs to new robotics domains, including a morphological heterogeneous system and a real robotic system.Fundação para a CiĂȘncia e a Tecnologia (FCT, PEst-OE/EEI/LA0008/2011

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Evolution of fish schools: a theoretical study by agent-based simulation and game-theoretic analysis

    Get PDF
    This thesis aimed to identify the underlying mechanism which drives fish to evolve into the schooling behaviour under predation. Previous works used to explain this formation by group benefits, individual differences or evolutionary trade-offs. However, conflicts from these explanations to the natural fish are considerable. Based on agent-based simulations and game-theoretic analyses, this thesis demonstrated that the intraspecies competition in a relatively homogeneous population is sufficient to cause the evolution of fish schools. It has been shown that when predators exhibit the ‘marginal predation’, that is, only catching prey on the margin of a group, prey fish must evolve to form a selfish herd, which will be increasingly crowded until no outer fish can enter it. In this case, fish should evolve to leave the group margin together, as the originally reported ‘collective departure strategy’, to expose the inner fish and share the risk. This adaptation then leads to the emergence of fish schools. The thesis further showed that the ‘marginal predation’ of predators and the ‘collective departure’ of prey is able to form an evolutionarily stable state in a coevolutionary system, which completed the explanation of the evolution of fish schools in nature

    Evolving hierarchical visually guided neural network agents to investigate complex interactions.

    Get PDF
    A complex system is a system with a large number of interacting components without any mechanism for central control that displays self organisation. Understanding how these interactions affect the overall behaviour of a system is of great interest to science. Indeed, researchers use a wide variety of models to investigate complex systems. The problem with most models is that they disregard the hierarchical nature of complex systems: they ignore the fact that components of real world systems tend to be complex systems as well. This prevents researchers from investigating the interactions taking place between the lower and the higher levels of the model which may be crucial in order to gain a full understanding of the examined phenomena and of complex systems in general. Therefore, this thesis introduces Mosaic World, a multi-agent model for the purpose of investigating interactions (focusing on 'complex' multilevel interactions) within a hierarchical complex system, in addition to other computational and biological hypotheses. Mosaic World comprises a population of evolving neural network agents that inhabit a changing visual environment. By analysing the interactions that occur within Mosaic World, this thesis demonstrates the importance of incorporating hierarchical complexity into a model, and contributes to our understanding of hierarchical complex systems by showing how selective pressures cause differentiation across levels. Additionally, the study of multilevel interactions is used to probe several hypotheses and provides the following contributions among others: Analysis of agent evolvability as affected by the usage of different types of structural mutations in the evolutionary process. Demonstration that agents controlled by modular neural networks are fitter than agents that are controlled by non-modular neural networks the improvement in fitness occurs through specialisation of modules. Empirical support for a biological theory suggesting that colour vision evolved as a method of dealing with ambiguous stimuli

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore