35,266 research outputs found

    Robust ASR using Support Vector Machines

    Get PDF
    The improved theoretical properties of Support Vector Machines with respect to other machine learning alternatives due to their max-margin training paradigm have led us to suggest them as a good technique for robust speech recognition. However, important shortcomings have had to be circumvented, the most important being the normalisation of the time duration of different realisations of the acoustic speech units. In this paper, we have compared two approaches in noisy environments: first, a hybrid HMM–SVM solution where a fixed number of frames is selected by means of an HMM segmentation and second, a normalisation kernel called Dynamic Time Alignment Kernel (DTAK) first introduced in Shimodaira et al. [Shimodaira, H., Noma, K., Nakai, M., Sagayama, S., 2001. Support vector machine with dynamic time-alignment kernel for speech recognition. In: Proc. Eurospeech, Aalborg, Denmark, pp. 1841–1844] and based on DTW (Dynamic Time Warping). Special attention has been paid to the adaptation of both alternatives to noisy environments, comparing two types of parameterisations and performing suitable feature normalisation operations. The results show that the DTA Kernel provides important advantages over the baseline HMM system in medium to bad noise conditions, also outperforming the results of the hybrid system.Publicad

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise

    Get PDF
    The potential contribution of the peripheral auditory efferent system to our understanding of speech in a background of competing noise was studied using a computer model of the auditory periphery and assessed using an automatic speech recognition system. A previous study had shown that a fixed efferent attenuation applied to all channels of a multi-channel model could improve the recognition of connected digit triplets in noise [G. J. Brown, R. T. Ferry, and R. Meddis, J. Acoust. Soc. Am. 127, 943?954 (2010)]. In the current study an anatomically justified feedback loop was used to automatically regulate separate attenuation values for each auditory channel. This arrangement resulted in a further enhancement of speech recognition over fixed-attenuation conditions. Comparisons between multi-talker babble and pink noise interference conditions suggest that the benefit originates from the model?s ability to modify the amount of suppression in each channel separately according to the spectral shape of the interfering sounds

    Combining Residual Networks with LSTMs for Lipreading

    Full text link
    We propose an end-to-end deep learning architecture for word-level visual speech recognition. The system is a combination of spatiotemporal convolutional, residual and bidirectional Long Short-Term Memory networks. We train and evaluate it on the Lipreading In-The-Wild benchmark, a challenging database of 500-size target-words consisting of 1.28sec video excerpts from BBC TV broadcasts. The proposed network attains word accuracy equal to 83.0, yielding 6.8 absolute improvement over the current state-of-the-art, without using information about word boundaries during training or testing.Comment: Submitted to Interspeech 201

    A Comparison of Front-Ends for Bitstream-Based ASR over IP

    Get PDF
    Automatic speech recognition (ASR) is called to play a relevant role in the provision of spoken interfaces for IP-based applications. However, as a consequence of the transit of the speech signal over these particular networks, ASR systems need to face two new challenges: the impoverishment of the speech quality due to the compression needed to fit the channel capacity and the inevitable occurrence of packet losses. In this framework, bitstream-based approaches that obtain the ASR feature vectors directly from the coded bitstream, avoiding the speech decoding process, have been proposed ([S.H. Choi, H.K. Kim, H.S. Lee, Speech recognition using quantized LSP parameters and their transformations in digital communications, Speech Commun. 30 (4) (2000) 223–233. A. Gallardo-Antolín, C. Pelàez-Moreno, F. Díaz-de-María, Recognizing GSM digital speech, IEEE Trans. Speech Audio Process., to appear. H.K. Kim, R.V. Cox, R.C. Rose, Performance improvement of a bitstream-based front-end for wireless speech recognition in adverse environments, IEEE Trans. Speech Audio Process. 10 (8) (2002) 591–604. C. Peláez-Moreno, A. Gallardo-Antolín, F. Díaz-de-María, Recognizing voice over IP networks: a robust front-end for speech recognition on the WWW, IEEE Trans. Multimedia 3(2) (2001) 209–218], among others) to improve the robustness of ASR systems. LSP (Line Spectral Pairs) are the preferred set of parameters for the description of the speech spectral envelope in most of the modern speech coders. Nevertheless, LSP have proved to be unsuitable for ASR, and they must be transformed into cepstrum-type parameters. In this paper we comparatively evaluate the robustness of the most significant LSP to cepstrum transformations in a simulated VoIP (voice over IP) environment which includes two of the most popular codecs used in that network (G.723.1 and G.729) and several network conditions. In particular, we compare ‘pseudocepstrum’ [H.K. Kim, S.H. Choi, H.S. Lee, On approximating Line Spectral Frequencies to LPC cepstral coefficients, IEEE Trans. Speech Audio Process. 8 (2) (2000) 195–199], an approximated but straightforward transformation of LSP into LP cepstral coefficients, with a more computationally demanding but exact one. Our results show that pseudocepstrum is preferable when network conditions are good or computational resources low, while the exact procedure is recommended when network conditions become more adverse.Publicad

    A computer model of auditory efferent suppression: Implications for the recognition of speech in noise

    Get PDF
    The neural mechanisms underlying the ability of human listeners to recognize speech in the presence of background noise are still imperfectly understood. However, there is mounting evidence that the medial olivocochlear system plays an important role, via efferents that exert a suppressive effect on the response of the basilar membrane. The current paper presents a computer modeling study that investigates the possible role of this activity on speech intelligibility in noise. A model of auditory efferent processing [ Ferry, R. T., and Meddis, R. (2007). J. Acoust. Soc. Am. 122, 3519?3526 ] is used to provide acoustic features for a statistical automatic speech recognition system, thus allowing the effects of efferent activity on speech intelligibility to be quantified. Performance of the ?basic? model (without efferent activity) on a connected digit recognition task is good when the speech is uncorrupted by noise but falls when noise is present. However, recognition performance is much improved when efferent activity is applied. Furthermore, optimal performance is obtained when the amount of efferent activity is proportional to the noise level. The results obtained are consistent with the suggestion that efferent suppression causes a ?release from adaptation? in the auditory-nerve response to noisy speech, which enhances its intelligibility
    • …
    corecore