1,813 research outputs found

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Computing Hilbert class polynomials with the Chinese Remainder Theorem

    Get PDF
    We present a space-efficient algorithm to compute the Hilbert class polynomial H_D(X) modulo a positive integer P, based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|^(1/2+o(1))log P) space and has an expected running time of O(|D|^(1+o(1)). We describe practical optimizations that allow us to handle larger discriminants than other methods, with |D| as large as 10^13 and h(D) up to 10^6. We apply these results to construct pairing-friendly elliptic curves of prime order, using the CM method.Comment: 37 pages, corrected a typo that misstated the heuristic complexit

    Generalised Mersenne Numbers Revisited

    Get PDF
    Generalised Mersenne Numbers (GMNs) were defined by Solinas in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use in elliptic curve cryptography. Their form is such that modular reduction is extremely efficient, thus making them an attractive choice for modular multiplication implementation. However, the issue of residue multiplication efficiency seems to have been overlooked. Asymptotically, using a cyclic rather than a linear convolution, residue multiplication modulo a Mersenne number is twice as fast as integer multiplication; this property does not hold for prime GMNs, unless they are of Mersenne's form. In this work we exploit an alternative generalisation of Mersenne numbers for which an analogue of the above property --- and hence the same efficiency ratio --- holds, even at bitlengths for which schoolbook multiplication is optimal, while also maintaining very efficient reduction. Moreover, our proposed primes are abundant at any bitlength, whereas GMNs are extremely rare. Our multiplication and reduction algorithms can also be easily parallelised, making our arithmetic particularly suitable for hardware implementation. Furthermore, the field representation we propose also naturally protects against side-channel attacks, including timing attacks, simple power analysis and differential power analysis, which is essential in many cryptographic scenarios, in constrast to GMNs.Comment: 32 pages. Accepted to Mathematics of Computatio

    Efficient algorithms for pairing-based cryptosystems

    Get PDF
    We describe fast new algorithms to implement recent cryptosystems based on the Tate pairing. In particular, our techniques improve pairing evaluation speed by a factor of about 55 compared to previously known methods in characteristic 3, and attain performance comparable to that of RSA in larger characteristics.We also propose faster algorithms for scalar multiplication in characteristic 3 and square root extraction over Fpm, the latter technique being also useful in contexts other than that of pairing-based cryptography

    Group law computations on Jacobians of hyperelliptic curves

    Get PDF
    We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    Implementation of Generic and Efficient Architecture of Elliptic Curve Cryptography over Various GF(p) for Higher Data Security

    Get PDF
    Elliptic Curve Cryptography (ECC) has recognized much more attention over the last few years and has time-honored itself among the renowned public key cryptography schemes. The main feature of ECC is that shorter keys can be used as the best option for implementation of public key cryptography in resource-constrained (memory, power, and speed) devices like the Internet of Things (IoT), wireless sensor based applications, etc. The performance of hardware implementation for ECC is affected by basic design elements such as a coordinate system, modular arithmetic algorithms, implementation target, and underlying finite fields. This paper shows the generic structure of the ECC system implementation which allows the different types of designing parameters like elliptic curve, Galois prime finite field GF(p), and input type. The ECC system is analyzed with performance parameters such as required memory, elapsed time, and process complexity on the MATLAB platform. The simulations are carried out on the 8th generation Intel core i7 processor with the specifications of 8 GB RAM, 3.1 GHz, and 64-bit architecture. This analysis helps to design an efficient and high performance architecture of the ECC system on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA).Elliptic Curve Cryptography (ECC) has recognized much more attention over the last few years and has time-honored itself among the renowned public key cryptography schemes. The main feature of ECC is that shorter keys can be used as the best option for implementation of public key cryptography in resource-constrained (memory, power, and speed) devices like the Internet of Things (IoT), wireless sensor based applications, etc. The performance of hardware implementation for ECC is affected by basic design elements such as a coordinate system, modular arithmetic algorithms, implementation target, and underlying finite fields. This paper shows the generic structure of the ECC system implementation which allows the different types of designing parameters like elliptic curve, Galois prime finite field GF(p), and input type. The ECC system is analyzed with performance parameters such as required memory, elapsed time, and process complexity on the MATLAB platform. The simulations are carried out on the 8th generation Intel core i7 processor with the specifications of 8 GB RAM, 3.1 GHz, and 64-bit architecture. This analysis helps to design an efficient and high performance architecture of the ECC system on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA)
    corecore