5,980 research outputs found

    Evaluating Visual Realism in Drawing Areas of Interest on UML Diagrams

    Get PDF
    Areas of interest (AOIs) are defined as an addition to UML diagrams: groups of elements of system architecture diagrams that share some common property. Some methods have been proposed to automatically draw AOIs on UML diagrams. However, it is not clear how users perceive the results of such methods as compared to human-drawn areas of interest. We present here a process of studying and improving the perceived quality of computer-drawn AOIs. We qualitatively evaluated how users perceive the quality of computer- and human-drawn AOIs, and used these results to improve an existing algorithm for drawing AOIs. Finally, we designed a quantitative comparison for AOI drawings and used it to show that our improved renderings are closer to human drawings than the original rendering algorithm results. The combined user evaluation, algorithmic improvements, and quantitative comparison support our claim of improving the perceived quality of AOIs rendered on UML diagrams.

    An Evaluation of Design Rule Spaces as Risk Containers

    Get PDF
    It is well understood that software development can be a risky enterprise and industrial projects often overrun budget and schedule. Effective risk management is, therefore, vital for a successful project outcome. Design Rule Spaces (DRSpaces) have been used by other researchers to understand why implemented software is error-prone. This industrial case study evaluates whether such spaces are durable, meaningful, and isolating risk containers. DRSpaces were created from UML class diagrams of architectural design artefacts. In our study, object orientated metrics were calculated from the UML diagrams, and compared to the error-proneness of the DRSpace implementation, to determine whether architectural coupling translated into implementation difficulties. A correlation between architectural coupling and error-proneness of DRSpaces was observed in the case study. Software developers were asked to identify DRSpaces they found difficult to implement, in order to understand which factors, other than architectural coupling, were also important. The qualitative results show agreement between the code areas developers found difficult to implement and the error-prone DRSpaces. However, the results also show that architectural coupling is just one risk factor of many. The case study suggests that architectural DRSpaces can be used to facilitate a targeted risk review prior to implementation and manage risk

    Modeling the object-oriented software process: OPEN and the unified process

    Get PDF
    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed

    Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis (Extended)

    Get PDF
    This extended paper presents 1) a novel hierarchy and recursion extension to the process tree model; and 2) the first, recursion aware process model discovery technique that leverages hierarchical information in event logs, typically available for software systems. This technique allows us to analyze the operational processes of software systems under real-life conditions at multiple levels of granularity. The work can be positioned in-between reverse engineering and process mining. An implementation of the proposed approach is available as a ProM plugin. Experimental results based on real-life (software) event logs demonstrate the feasibility and usefulness of the approach and show the huge potential to speed up discovery by exploiting the available hierarchy.Comment: Extended version (14 pages total) of the paper Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis. This Technical Report version includes the guarantee proofs for the proposed discovery algorithm

    Supporting the reconciliation of models of object behaviour

    Get PDF
    This paper presents Reconciliation+, a method which identifies overlaps between models of software systems behaviour expressed as UML object interaction diagrams (i.e., sequence and/or collaboration diagrams), checks whether the overlapping elements of these models satisfy specific consistency rules and, in cases where they violate these rules, guides software designers in handling the detected inconsistencies. The method detects overlaps between object interaction diagrams by using a probabilistic message matching algorithm that has been developed for this purpose. The guidance to software designers on when to check for inconsistencies and how to deal with them is delivered by enacting a built-in process model that specifies the consistency rules that can be checked against overlapping models and different ways of handling violations of these rules. Reconciliation+ is supported by a toolkit. It has also been evaluated in a case study. This case study has produced positive results which are discussed in the paper

    An extensible benchmark and tooling for comparing reverse engineering approaches

    Get PDF
    Various tools exist to reverse engineer software source code and generate design information, such as UML projections. Each has specific strengths and weaknesses, however no standardised benchmark exists that can be used to evaluate and compare their performance and effectiveness in a systematic manner. To facilitate such comparison in this paper we introduce the Reverse Engineering to Design Benchmark (RED-BM), which consists of a comprehensive set of Java-based targets for reverse engineering and a formal set of performance measures with which tools and approaches can be analysed and ranked. When used to evaluate 12 industry standard tools performance figures range from 8.82\% to 100\% demonstrating the ability of the benchmark to differentiate between tools. To aid the comparison, analysis and further use of reverse engineering XMI output we have developed a parser which can interpret the XMI output format of the most commonly used reverse engineering applications, and is used in a number of tools
    corecore