3,760 research outputs found

    Combining deep reinforcement learning and multi-stage stochastic programming to address the supply chain inventory management problem

    Get PDF
    We introduce a novel heuristic designed to address the supply chain inventory management problem in the context of a two-echelon divergent supply chain. The proposed heuristic advances the current state-of-the-art by combining deep reinforcement learning with multi-stage stochastic programming. In particular, deep reinforcement learning is employed to determine the number of batches to produce, while multi-stage stochastic programming is applied to make shipping decisions. To support further research, we release a publicly available software environment that simulates a wide range of two-echelon divergent supply chain settings, allowing the manipulation of various parameter values, including those associated with seasonal demands. We then present a comprehensive set of numerical experiments considering constraints on production and warehouse capacities under fixed and variable logistic costs. The results demonstrate that the proposed heuristic significantly and consistently outperforms pure deep reinforcement learning algorithms in minimizing total costs. Moreover, it overcomes several inherent limitations of multi-stage stochastic programming models, thus underscoring its potential advantages in addressing complex supply chain scenarios

    Demand Prediction and Inventory Management of Surgical Supplies

    Get PDF
    Effective supply chain management is critical to operations in various industries, including healthcare. Demand prediction and inventory management are essential parts of healthcare supply chain management for ensuring optimal patient outcomes, controlling costs, and minimizing waste. The advances in data analytics and technology have enabled many sophisticated approaches to demand forecasting and inventory control. This study aims to leverage these advancements to accurately predict demand and manage the inventory of surgical supplies to reduce costs and provide better services to patients. In order to achieve this objective, a Long Short-Term Memory (LSTM) model is developed to predict the demand for commonly used surgical supplies. Moreover, the volume of scheduled surgeries influences the demand for certain surgical supplies. Hence, another LSTM model is adopted from the literature to forecast surgical case volumes and predict the procedure-specific surgical supplies. A few new features are incorporated into the adopted model to account for the variations in the surgical case volumes caused by COVID-19 in 2020. This study then develops a multi-item capacitated dynamic lot-sizing replenishment model using Mixed Integer Programming (MIP). However, forecasting is always considered inaccurate, and demand is hardly deterministic in the real world. Therefore, a Two-Stage Stochastic Programming (TSSP) model is developed to address these issues. Experimental results demonstrate that the TSSP model provides an additional benefit of $2,328.304 over the MIP model

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Resilience and food security in a food systems context

    Get PDF
    This open access book compiles a series of chapters written by internationally recognized experts known for their in-depth but critical views on questions of resilience and food security. The book assesses rigorously and critically the contribution of the concept of resilience in advancing our understanding and ability to design and implement development interventions in relation to food security and humanitarian crises. For this, the book departs from the narrow beaten tracks of agriculture and trade, which have influenced the mainstream debate on food security for nearly 60 years, and adopts instead a wider, more holistic perspective, framed around food systems. The foundation for this new approach is the recognition that in the current post-globalization era, the food and nutritional security of the world’s population no longer depends just on the performance of agriculture and policies on trade, but rather on the capacity of the entire (food) system to produce, process, transport and distribute safe, affordable and nutritious food for all, in ways that remain environmentally sustainable. In that context, adopting a food system perspective provides a more appropriate frame as it incites to broaden the conventional thinking and to acknowledge the systemic nature of the different processes and actors involved. This book is written for a large audience, from academics to policymakers, students to practitioners

    The University of Montana: A History Through the Lens of Physical Culture, PE, Health, Athletics, and Recreation 1897-2019: The Evolution of a Department

    Get PDF
    https://scholarworks.umt.edu/burns/1000/thumbnail.jp

    A robotic platform for precision agriculture and applications

    Get PDF
    Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.Le tecniche agricole sono state migliorate nel corso dei secoli per soddisfare la crescente domanda di aumento della popolazione mondiale. I recenti progressi tecnologici in termini di piattaforme robotiche possono essere sfruttati in questo contesto. Poiché la gestione del frutteto è una delle applicazioni più impegnative, a causa della sua struttura arborea e della necessaria interazione con l'ambiente, è stata oggetto di ricerca per fornire una soluzione personalizzata che sviluppi un nuovo concetto di veicolo agricolo. Il risultato si è concretizzato in un veicolo cingolato leggero, capace di effettuare una navigazione autonoma sia nello scenario di pieno campo che all'interno dei frutteti (navigazione interfilare). La progettazione meccanica, insieme all'implementazione del software, sono stati dettagliati per evidenziarne i punti di forza, accanto ad alcuni ulteriori miglioramenti previsti per incrementarne le prestazioni complessive. I test di stabilità statica hanno dimostrato che il veicolo può resistere a ripidi pendii. Sono stati inoltre studiati miglioramenti per affinare la stima dello slittamento che si verifica durante le manovre di svolta, tipico dei veicoli cingolati. L'architettura software è stata implementata utilizzando il framework Robot Operating System (ROS), in modo da sfruttare i pacchetti disponibili relativi a componenti base, come le interfacce dei sensori, e consentendo al contempo un'implementazione personalizzata degli algoritmi di navigazione sviluppati. I test in condizioni reali all'interno dei frutteti sperimentali dell'università hanno dimostrato la robustezza e la stabilità della soluzione con oltre 800 ore di lavoro sul campo. Il veicolo ha permesso di attivare e svolgere un'ampia gamma di attività agricole in maniera autonoma, come l'irrorazione, la falciatura e la raccolta di dati sul campo. Questi ultimi possono essere sfruttati per stimare automaticamente le proprietà più rilevanti del frutteto, come il conteggio e la calibratura dei frutti, la stima delle proprietà della chioma e la raccolta autonoma dei frutti con stime post-raccolta
    • …
    corecore