12 research outputs found

    Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products\u27 Unit Costs Delivered to the Final Customers

    Get PDF
    This study aims at proposing a decision-support tool to reduce the total supply chain costs (TSCC) consisting of two separate and independent objective functions including total transportation costs (TTC) and total cross-docking operating cost (TCDC). The full-truckload (FT) transportation mode is assumed to handle supplier→customer product transportation; otherwise, a cross-docking terminal as an intermediate transshipment node is hired to handle the less-than-truckload (LTL) product transportation between the suppliers and customers. TTC model helps minimize the total transportation costs by maximization of the number of FT transportation and reduction of the total number of LTL. TCDC model tries to minimize total operating costs within a cross-docking terminal. Both sub-objective functions are formulated as binary mathematical programming models. The first objective function is a binary-linear programming model, and the second one is a binary-quadratic assignment problem (QAP) model. QAP is an NP-hard problem, and therefore, besides a complement enumeration method using ILOG CPLEX software, the Tabu search (TS) algorithm with four diversification methods is employed to solve larger size problems. The efficiency of the model is examined from two perspectives by comparing the output of two scenarios including; i.e., 1) when cross-docking is included in the supply chain and 2) when it is excluded. The first perspective is to compare the two scenarios’ outcomes from the total supply chain costs standpoint, and the second perspective is the comparison of the scenarios’ outcomes from the total supply chain costs standpoint. By addressing a numerical example, the results confirm that the present of cross-docking within a supply chain can significantly reduce total supply chain costs and total transportation costs

    Hybrid Ant Colony Optimization For Fuzzy Unrelated Parallel Machine Scheduling Problems

    Get PDF
    This study extends the best hybrid ant colony optimization variant developed by Liao et al. (2014) for crisp unrelated parallel machine scheduling problems to solve fuzzy unrelated parallel machine scheduling problems in consideration of trapezoidal fuzzy processing times, trapezoidal fuzzy sequencing dependent setup times and trapezoidal fuzzy release times. The objective is to find the best schedule taking minimum fuzzy makespan in completing all jobs. In this study, fuzzy arithmetic is used to determine fuzzy completion times of jobs and defuzzification function is used to convert fuzzy numbers back to crisp numbers for ranking. Eight fuzzy ranking methods are tested to find the most feasible one to be employed in this study. The fuzzy arithmetic testing includes four different cases and each case with the following operations separately, i.e., addition, subtraction, multiplication and division, to investigate the spread of fuzziness as fuzzy numbers are subject to more and more number of operations. The effect of fuzzy ranking methods on hybrid ant colony optimization (hACO) is investigated. To prove the correctness of our methodology and coding, unrelated parallel machine scheduling with fuzzy numbers and crisp numbers are compared based on scheduling problems up to 15 machines and 200 jobs. Relative percentage deviation (RPD) is used to evaluate the performance of hACO in solving fuzzy unrelated parallel machine scheduling problems. A numerical study on large-scale scheduling problems up to 20 machines and 200 jobs is conducted to assess the performance of the hACO algorithm. For comparison, a discrete particle swarm optimization (dPSO) algorithm is implemented for fuzzy unrelated parallel machine scheduling problem as well. The results show that the hACO has better performance than dPSO not only in solution quality in terms of RPD value, but also in computational time

    Minimization of the Total Traveling Distance and Maximum Distance by Using a Transformed-Based Encoding EDA to Solve the Multiple Traveling Salesmen Problem

    Get PDF
    [[abstract]]Estimation of distribution algorithms (EDAs) have been used to solve numerous hard problems. However, their use with in-group optimization problems has not been discussed extensively in the literature. A well-known in-group optimization problem is the multiple traveling salesmen problem (mTSP), which involves simultaneous assignment and sequencing procedures and are shown in different forms. This paper presents a new algorithm, named EDAMLA, which is based on self-guided genetic algorithm with a minimum loading assignment (MLA) rule.This strategy uses the transformed-based encoding approach instead of direct encoding. The solution space of the proposed method is only ??!. We compare the proposed algorithm against the optimal direct encoding technique, the two-part encoding genetic algorithm, and, in experiments on 34 TSP instances drawn from the TSPLIB, find that its solution space is ??! ( ??−1 ??−1 ). The scale of the experiments exceeded that presented in prior studies. The results show that the proposed algorithm was superior to the two-part encoding genetic algorithm in terms of minimizing the total traveling distance. Notably, the proposed algorithm did not cause a longer traveling distance when the number of salesmen was increased from 3 to 10. The results suggest that EDA researchers should employ the MLA rule instead of direct encoding in their proposed algorithms.[[notice]]補正完

    New solution approaches for optimization problems with combinatorial aspects in logistics management

    Get PDF
    This dissertation comprises five papers, which have been published in scientific journals between 2019 and 2022. The papers consider logistic optimization problems from three different subjects with a focus on intra-logistics. All considered optimization problems have strong combinatorial aspects. To solve the considered problems, various solution approaches including different decomposition techniques are employed. Paper 1 investigates the optimization of the layout and storage assignment in warehouses with U-shaped order picking zones. The paper considers two objectives, namely minimizing the order picker's walking distance and physical strain during order picking. To solve the problem, a semantic decomposition approach is proposed, which solves the problem in polynomial time. In a computational study, both considered objectives are found to be mostly complementary. Moreover, suggestions for advantageous layout designs and storage assignments are derived. Paper 2 considers the problem of how to stow bins on tow trains in order to minimize the handling personnel's physical strain for loading and unloading. The problem is shown to be NP-hard and decomposed semantically. Utilising the decomposition, the problem is solved exactly with dynamic programming and heuristically with a greedy randomized adaptive search procedure. A consecutive computational study shows that both procedures perform well. Beyond that, it investigates the influence of the tow train wagons' design on the considered objective. Paper 3 is concerned with the problem of scheduling jobs with time windows on unrelated parallel machines, which is a NP-hard optimization problem that has applications, i.a., in berth allocation and truck dock scheduling. The paper presents an exact logic-based Benders decomposition procedure and a heuristic solution approach based on a set partitioning formulation of the problem. Moreover, three distinct objectives, namely minimizing the makespan, the maximum flow time, and the maximum lateness are considered. Both procedures exhibit good performances in the concluding computational study. Paper 4 addresses the problem of order picker routing in a U-shaped order picking zone with the objective of minimizing the covered walking distance. The problem is proven to be NP-hard. An exact logic-based Benders decomposition procedure as well as a heuristic dynamic programming approach are developed and shown to perform well in computational tests. Beyond that, the paper discusses different storage assignment policies and compares them in a numeric study. Paper 5 studies scheduling electrically powered tow trains in in-plant production logistics. The problem is regarded as an Electric Vehicle Scheduling Problem, where tow trains must be assigned to timetabled service trips. Since the tow trains' range is limited, charging breaks need to be scheduled in-between trips, which require detours and time. The objective consists in minimizing the required fleet size. The problem is shown to be NP-hard. To solve the problem, Paper 5 proposes a branch-and-check approach that is applicable for various charging technologies, including battery swapping and plug-in charging with nonlinear charge increase. In a computational study, the approach's practical applicability is demonstrated. Moreover, influences of the batteries' maximum capacity and employed charging technology are investigated

    Optimal Configuration of Inspection and Rework Stations in a Multistage Flexible Flowline

    Get PDF
    Inspection and rework are two important issues of quality control. In this research, an N-stage flowline is considered to make decisions on these two issues. When defective items are detected at the inspection station the items are either scrapped or reworked. A reworkable item may be repaired at the regular defect-creating workstation or at a dedicated off-line rework station. Two problems (end-of-line and multistage inspections) are considered here to deal with this situation. The end-of-line inspection (ELI) problem considers an inspection station located at the end of the line while the multistage inspection (MSI) problem deals with multiple in-line inspection stations that partition the flowline into multiple flexible lines. Models for unit cost of production are developed for both problems. The ELI problem is formulated for determining the best decision among alternative policies for dealing with defective items. For an MSI problem a unit cost function is developed for determining the number and locations of in-line inspection stations along with the alternative decisions on each type of defects. Both of the problems are formulated as fractional mixed-integer nonlinear programming (f-MINLP) to minimize the unit cost of production. After several transformations the f-MINLP becomes a mixed-integer linear programming (MILP) problem. A construction heuristic, coined as Inspection Station Assignment (ISA) heuristic is developed to determine a sub-optimal location of inspection and rework stations in order to achieve minimum unit cost of production. A hybrid of Ant-Colony Optimization-based metaheuristic (ACOR) and ISA is devised to efficiently solve large instances of MSI problems. Numerical examples are presented to show the solution procedure of ELI problems with branch and bound (B&B) method. Empirical studies on a production line with large number of workstations are presented to show the quality and efficiency of the solution processes involved in both ELI and MSI problems. Computational results present that the hybrid heuristic ISA+ACOR shows better performance in terms of solution quality and efficiency. These approaches are applicable to many discrete product manufacturing systems including garments industry

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore