26,064 research outputs found

    Partnering Strategies for Fitness Evaluation in a Pyramidal Evolutionary Algorithm

    Full text link
    This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity

    A Genetic Programming Approach to Designing Convolutional Neural Network Architectures

    Full text link
    The convolutional neural network (CNN), which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, we attempt to automatically construct CNN architectures for an image classification task based on Cartesian genetic programming (CGP). In our method, we adopt highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. To evaluate the proposed method, we constructed a CNN architecture for the image classification task with the CIFAR-10 dataset. The experimental result shows that the proposed method can be used to automatically find the competitive CNN architecture compared with state-of-the-art models.Comment: This is the revised version of the GECCO 2017 paper. The code of our method is available at https://github.com/sg-nm/cgp-cn

    Exploiting Tournament Selection for Efficient Parallel Genetic Programming

    Full text link
    Genetic Programming (GP) is a computationally intensive technique which is naturally parallel in nature. Consequently, many attempts have been made to improve its run-time from exploiting highly parallel hardware such as GPUs. However, a second methodology of improving the speed of GP is through efficiency techniques such as subtree caching. However achieving parallel performance and efficiency is a difficult task. This paper will demonstrate an efficiency saving for GP compatible with the harnessing of parallel CPU hardware by exploiting tournament selection. Significant efficiency savings are demonstrated whilst retaining the capability of a high performance parallel implementation of GP. Indeed, a 74% improvement in the speed of GP is achieved with a peak rate of 96 billion GPop/s for classification type problems

    'On the Application of Hierarchical Coevolutionary Genetic Algorithms: Recombination and Evaluation Partners'

    Get PDF
    This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements

    Evolutionary-based sparse regression for the experimental identification of duffing oscillator

    Get PDF
    In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. The results show that the method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the robustness of the identification algorithm is investigated for various levels of noise in simulation. The proposed method has possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics
    • …
    corecore