262,492 research outputs found

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator

    Energy Efficiency and Quality of Services in Virtualized Cloud Radio Access Network

    Get PDF
    Cloud Radio Access Network (C-RAN) is being widely studied for soft and green fifth generation of Long Term Evolution - Advanced (LTE-A). The recent technology advancement in network virtualization function (NFV) and software defined radio (SDR) has enabled virtualization of Baseband Units (BBU) and sharing of underlying general purpose processing (GPP) infrastructure. Also, new innovations in optical transport network (OTN) such as Dark Fiber provides low latency and high bandwidth channels that can support C-RAN for more than forty-kilometer radius. All these advancements make C-RAN feasible and practical. Several virtualization strategies and architectures are proposed for C-RAN and it has been established that C-RAN offers higher energy efficiency and better resource utilization than the current decentralized radio access network (D-RAN). This project studies proposed resource utilization strategy and device a method to calculate power utilization. Then proposes and analyzes a new resource management and virtual BBU placement strategy for C-RAN based on demand prediction and inter-BBU communication load. The new approach is compared with existing state of art strategies with same input scenarios and load. The trade-offs between energy efficiency and quality of services is discussed. The project concludes with comparison between different strategies based on complexity of the system, performance in terms of service availability and optimization efficiency in different scenarios

    Non-contiguous processor allocation strategy for 2D mesh connected multicomputers based on sub-meshes available for allocation

    Get PDF
    Contiguous allocation of parallel jobs usually suffers from the degrading effects of fragmentation as it requires that the allocated processors be contiguous and has the same topology as the network topology connecting these processors. In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-meshes rather than always waiting until a single sub-mesh of the requested size is available. Lifting the contiguity condition in non-contiguous allocation is expected to reduce processor fragmentation and increase processor utilization. However, the communication overhead is increased because the distances traversed by messages can be longer. The extra communication overhead depends on how the allocation request is partitioned and allocated to free sub-meshes. In this paper, a new non-contiguous processor allocation strategy, referred to as Greedy-Available-Busy-List, is suggested for the 2D mesh network, and is compared using simulation against the well-known non-contiguous and contiguous allocation strategies. To show the performance improved by proposed strategy, we conducted simulation runs under the assumption of wormhole routing and all-to-all communication pattern. The results show that the proposed strategy can reduce the communication overhead and improve performance substantially in terms of turnaround times of jobs and finish times
    • …
    corecore