756 research outputs found

    Fairness in a data center

    Get PDF
    Existing data centers utilize several networking technologies in order to handle the performance requirements of different workloads. Maintaining diverse networking technologies increases complexity and is not cost effective. This results in the current trend to converge all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and as such it has been chosen as the technology of choice for the converged fabric. However, traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part, due to its lossy nature and, therefore, has to be enhanced to allow for full convergence. The resulting technology, Data Center Bridging (DCB), is a new set of standards defined by the IEEE to make Ethernet lossless even in the presence of congestion. As with any new networking technology, it is critical to analyze how the different protocols within DCB interact with each other as well as how each protocol interacts with existing technologies in other layers of the protocol stack. This dissertation presents two novel schemes that address critical issues in DCB networks: fairness with respect to packet lengths and fairness with respect to flow control and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights of the outbound port. The algorithm was implemented on a real DCB switch and shown to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow of aggressor streams while allowing victim streams to continue unimpeded. Two variants of the targeting mechanism within TPFC are presented and their performance evaluated through simulation

    Design Related Investigations for Media Access Control Protocol Service Schemes in Wavelength Division Multiplexed All Optical Networks

    Get PDF
    All-optical networks (AON) are emerging through the technological advancement of various optical components, and promise to provide almost unlimited bandwidth. To realise true network utilisation, software solutions are required. An active area of research is media access control (MAC) protocol. This protocol should address the multiple channels by wavelength division mutiplexing (WDM) and bandwidth management. Token-passing (TP) is one such protocol, and is adopted due to its simplicity and collisionless nature. Previously, this protocol has been analysed for a single traffic type. However, such a study may not substantiate the protocol's acceptance in the AON design. As multiple traffic types hog the network through the introduction multimedia services and Internet, the MAC protocol should support this traffic. Four different priority schemes are proposed for TP protocol extension, and classified as static and dynamic schemes. Priority assignments are a priori in static scheme, whereas in the other scheme, priority reassignments are carried out dynamically. Three different versions of dynamic schemes are proposed. The schemes are investigated for performance through analytical modelling and simulations. The semi-Markov process (SMP) modelling approach is extended for the analyses of these cases. In this technique, the behaviour of a typical access node needs to be considered. The analytical results are compared with the simulation results. The deviations of the results are within the acceptable limits, indicating the applicability ofthe model in all-optical environment. It is seen that the static scheme offers higher priority traffic better delay and packet loss performance. Thus, this scheme can be used beneficially in hard real-time systems, where knowledge of priority is a priori. The dynamic priority scheme-l is more suitable for the environments where the lower priority traffic is near real-time traffic and loss sensitive too. For such a scheme, a larger buffer with smaller threshold limits resulted in improved performance. The dynamic scheme-2 and 3 can be employed to offer equal treatment for the different traffic types, and more beneficial in future AONs. These schemes are also compared in their performance to offer constant QoS level. New parameters to facilitate the comparison are proposed. It is observed that the dynamic scheme-l outperforms the other schemes, and these QoS parameters can be used for such QoS analysis. It is concluded that the research can benefit the design of the protocol and its service schemes needed in AON system and its applications

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Teleprotection signalling over an IP/MPLS network

    Get PDF
    Protection of electricity networks have developed to incorporate communications, referred to as protection signalling. Due to the evolution of the electricity supply system, there are many developments pending within the scope of protection signalling and protection engineering in general. This project investigates the use of current and emerging communications technologies (i.e. packetised networks) being applied and incorporated into current protection signalling schemes and technologies. The purpose of the project is to provide a more cost-effective solution to protection schemes running obsolescent hardware. While the medium-term goal of the industry is to move entirely to IEC 61850 communications, legacy teleprotection relays using non-IP communications will still exist for many years to come. For companies to be ready for an IEC 61850 rollout a fully deployed IP/MPLS network will be necessary and it can be seen that various companies worldwide are readying themselves in this way. However, in the short-term for these companies, this means maintaining their existing TDM network (which runs current teleprotection schemes) and IP/MPLS network. This is a costly business outcome that can be minimised with the migration of services from and decommissioning of TDM networks. Network channel testing was the primary testing focus of the project. The testing proved that teleprotection traffic with correct QoS markings assured the system met latency and stability requirements. Furthermore, MPLS resiliency features (secondary LSPs & Fast-reroute) were tested and proved automatic path failover was possible under fault conditions at sub-30ms speeds

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Some aspects of a code division multiple access local area network

    Get PDF
    Not Availabl
    corecore