127 research outputs found

    Predicting Arrhythmia Based on Machine Learning Using Improved Harris Hawk Algorithm

    Get PDF
    Arrhythmia disease is widely recognized as a prominent and lethal ailment on a global scale, resulting in a significant number of fatalities annually. The timely identification of this ailment is crucial for preserving individuals' lives. Machine Learning (ML), a branch of artificial intelligence (AI), has emerged as a highly efficient and cost-effective method for illness detection. The objective of this work is to develop a machine learning (ML) model capable of accurately predicting heart illness by using the Arrhythmia disease dataset, with the purpose of achieving optimal performance. The performance of the model is greatly influenced by the selection of the machine learning method and the features in the dataset for training purposes. In order to mitigate the issue of overfitting caused by the high dimensionality of the features in the Arrhythmia dataset, a reduction of the dataset to a lower dimensional subspace was performed via the improved Harris hawk optimization algorithm (iHHO). The Harris hawk algorithm exhibits a rapid convergence rate and possesses a notable degree of adaptability in its ability to identify optimal characteristics. The performance of the models created with the feature-selected dataset using various machine learning techniques was evaluated and compared. In this work, total seven classifiers like SVM, GB, GNB, RF, LR, DT, and KNN are used to classify the data produced by the iHHO algorithm. The results clearly show the improvement of 3%, 4%, 4%, 9%, 8%, 3%, and 9% with the classifiers KNN, RF, GB, SVM, LR, DT, and GNB respectively

    Detecting Heart Attacks Using Learning Classifiers

    Get PDF
    Cardiovascular diseases (CVDs) have emerged as a critical global threat to human life. The diagnosis of these diseases presents a complex challenge, particularly for inexperienced doctors, as their symptoms can be mistaken for signs of aging or similar conditions. Early detection of heart disease can help prevent heart failure, making it crucial to develop effective diagnostic techniques. Machine Learning (ML) techniques have gained popularity among researchers for identifying new patients based on past data. While various forecasting techniques have been applied to different medical datasets, accurate detection of heart attacks in a timely manner remains elusive. This article presents a comprehensive comparative analysis of various ML techniques, including Decision Tree, Support Vector Machines, Random Forest, Extreme Gradient Boosting (XGBoost), Adaptive Boosting, Multilayer Perceptron, Gradient Boosting, K-Nearest Neighbor, and Logistic Regression. These classifiers are implemented and evaluated in Python using data from over 300 patients obtained from the Kaggle cardiovascular repository in CSV format. The classifiers categorize patients into two groups: those with a heart attack and those without. Performance evaluation metrics such as recall, precision, accuracy, and the F1-measure are employed to assess the classifiers’ effectiveness. The results of this study highlight XGBoost classifier as a promising tool in the medical domain for accurate diagnosis, demonstrating the highest predictive accuracy (95.082%) with a calculation time of (0.07995 sec) on the dataset compared to other classifiers

    A Novel Soft Computing Based Model For Symptom Analysis & Disease Classification

    Get PDF
    In countries like India, many mortality occurs every year because of improper pronouncement of disease on time. Many people remain deprived of medication as the people per doctor ratio are nearly 1:1700. Every human body and its physiological processes show some symptoms of a diseased condition. The proposed model in this paper would analyze those symptoms for identification of the disease and its type. In this proposed model, few selected attributes would be considered which are shown as symptoms by a person suspected with a particular disease. Those attributes can be taken as input for the proposed symptom analysis and classification model, which is a soft computing model for classifying a sample first to be diseased or disease free and then, if diseased, predicting its type (if any). Number of diseased and disease free samples are to be collected. Each of these samples is a collection of attributes shown / expressed by a human body. With respect to a specific disease, those collected samples form two primary clusters, one is diseased and the other one is disease free. The disease free cluster may be discarded for further analysis. Depending on the symptoms shown by the diseased samples, every disease has some types based on the symptoms it shows. The diseased cluster of samples can reform clusters among themselves depending on the types of the disease. Those clusters then become the classes of the multiclass classifier for analysis of a new incoming sample

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    Get PDF
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    Linear and nonlinear analysis of normal and CAD-affected heart rate signals

    Get PDF
    Coronary Artery Disease (CAD) is one of the dangerous cardiac disease, often may lead to sudden cardiac death. It is difficult to diagnose CAD by manual inspection of electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted the Heart Rate (HR) from the ECG signals and used them as base signal for further analysis. We then analyzed the HR signals of both normal and CAD subjects using (i) time domain, (ii) frequency domain and (iii) nonlinear techniques. The following are the nonlinear methods that were used in this work: Poincare plots, Recurrence Quantification Analysis (RQA) parameters, Shannon entropy, Approximate Entropy (ApEn), Sample Entropy (SampEn), Higher Order Spectra (HOS) methods, Detrended Fluctuation Analysis (DFA), Empirical Mode Decomposition (EMD), Cumulants, and Correlation Dimension. As a result of the analysis, we present unique recurrence, Poincare and HOS plots for normal and CAD subjects. We have also observed significant variations in the range of these features with respect to normal and CAD classes, and have presented the same in this paper. We found that the RQA parameters were higher for CAD subjects indicating more rhythm. Since the activity of CAD subjects is less, similar signal patterns repeat more frequently compared to the normal subjects. The entropy based parameters, ApEn and SampEn, are lower for CAD subjects indicating lower entropy (less activity due to impairment) for CAD. Almost all HOS parameters showed higher values for the CAD group, indicating the presence of higher frequency content in the CAD signals. Thus, our study provides a deep insight into how such nonlinear features could be exploited to effectively and reliably detect the presence of CAD

    Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm

    Get PDF
    Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans

    Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review

    Get PDF
    Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans
    • …
    corecore