204 research outputs found

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems

    Get PDF
    In this paper we develop adaptive iterative coupling schemes for the Biot system modeling coupled poromechanics problems. We particularly consider the space-time formulation of the fixed-stress iterative scheme, in which we first solve the problem of flow over the whole space-time interval, then exploiting the space-time information for solving the mechanics. Two common discretizations of this algorithm are then introduced based on two coupled mixed finite element methods in-space and the backward Euler scheme in-time. Therefrom, adaptive fixed-stress algorithms are build on conforming reconstructions of the pressure and displacement together with equilibrated flux and stresses reconstructions. These ingredients are used to derive a posteriori error estimates for the fixed-stress algorithms, distinguishing the different error components, namely the spatial discretization, the temporal discretization, and the fixed-stress iteration components. Precisely, at the iteration k≥1k\geq 1 of the adaptive algorithm, we prove that our estimate gives a guaranteed and fully computable upper bound on the energy-type error measuring the difference between the exact and approximate pressure and displacement. These error components are efficiently used to design adaptive asynchronous time-stepping and adaptive stopping criteria for the fixed-stress algorithms. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive iterative coupling algorithms

    Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs

    Get PDF
    International audienceWe consider nonlinear algebraic systems resulting from numerical discretizations of nonlinear partial differential equations of diffusion type. To solve these systems, some iterative nonlinear solver, and, on each step of this solver, some iterative linear solver are used. We derive adaptive stopping criteria for both iterative solvers. Our criteria are based on an a posteriori error estimate which distinguishes the different error components, namely the discretization error, the linearization error, and the algebraic error. We stop the iterations whenever the corresponding error does no longer affect the overall error significantly. Our estimates also yield a guaranteed upper bound on the overall error at each step of the nonlinear and linear solvers. We prove the (local) efficiency and robustness of the estimates with respect to the size of the nonlinearity owing, in particular, to the error measure involving the dual norm of the residual. Our developments hinge on equilibrated flux reconstructions and yield a general framework. We show how to apply this framework to various discretization schemes like finite elements, nonconforming finite elements, discontinuous Galerkin, finite volumes, and mixed finite elements; to different linearizations like fixed point and Newton; and to arbitrary iterative linear solvers. Numerical experiments for the pp-Laplacian illustrate the tight overall error control and important computational savings achieved in our approach
    • …
    corecore