486 research outputs found

    A Comparison of PSO and Reinforcement Learning for Multi-Robot Obstacle Avoidance

    Get PDF
    The design of high-performing robotic controllers constitutes an example of expensive optimization in uncertain environments due to the often large parameter space and noisy performance metrics. There are several evaluative techniques that can be employed for on-line controller design. Adequate benchmarks help in the choice of the right algorithm in terms of final performance and evaluation time. In this paper, we use multi-robot obstacle avoidance as a benchmark to compare two different evaluative learning techniques: Particle Swarm Optimization and Q-learning. For Q-learning, we implement two different approaches: one with discrete states and discrete actions, and another one with discrete actions but a continuous state space. We show that continuous PSO has the highest fitness overall, and Q-learning with continuous states performs significantly better than Q-learning with discrete states. We also show that in the single robot case, PSO and Q-learning with discrete states require a similar amount of total learning time to converge, while the time required with Q-learning with continuous states is significantly larger. In the multi-robot case, both Q-learning approaches require a similar amount of time as in the single robot case, but the time required by PSO can be significantly reduced due to the distributed nature of the algorithm

    Bio-Inspired Obstacle Avoidance: from Animals to Intelligent Agents

    Get PDF
    A considerable amount of research in the field of modern robotics deals with mobile agents and their autonomous operation in unstructured, dynamic, and unpredictable environments. Designing robust controllers that map sensory input to action in order to avoid obstacles remains a challenging task. Several biological concepts are amenable to autonomous navigation and reactive obstacle avoidance. We present an overview of most noteworthy, elaborated, and interesting biologically-inspired approaches for solving the obstacle avoidance problem. We categorize these approaches into three groups: nature inspired optimization, reinforcement learning, and biorobotics. We emphasize the advantages and highlight potential drawbacks of each approach. We also identify the benefits of using biological principles in artificial intelligence in various research areas

    Obstacle Avoidance Scheme Based Elite Opposition Bat Algorithm for Unmanned Ground Vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) are intelligent vehicles that operate in an obstacle environment without an onboard human operator but can be controlled autonomously using an obstacle avoidance system or by a human operator from a remote location. In this research, an obstacle avoidance scheme-based elite opposition bat algorithm (EOBA) for UGVs was developed. The obstacle avoidance system comprises a simulation map, a perception system for obstacle detection, and the implementation of EOBA for generating an optimal collision-free path that led the UGV to the goal location. Three distance thresholds of 0.1 m, 0.2 m, and 0.3 m was used in the obstacle detection stage to determine the optimal distance threshold for obstacle avoidance. The performance of the obstacle avoidance scheme was compared with that of bat algorithm (BA) and particle swarm optimization (PSO) techniques. The simulation results show that the distance threshold of 0.3 m is the optimal threshold for obstacle avoidance provided that the size of the obstacle does not exceed the size of the UGV. The EOBA based scheme when compared with BA and PSO schemes obtained an average percentage reduction of 21.82% in terms of path length and 60% in terms of time taken to reach the target destination. The uniqueness of this approach is that the UGV avoid collision with an obstacle at a distance of 0.3 m from nearby obstacles as against taking three steps backward before avoiding obstacl

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Trajectory Generation for a Multibody Robotic System: Modern Methods Based on Product of Exponentials

    Get PDF
    This work presents several trajectory generation algorithms for multibody robotic systems based on the Product of Exponentials (PoE) formulation, also known as screw theory. A PoE formulation is first developed to model the kinematics and dynamics of a multibody robotic manipulator (Sawyer Robot) with 7 revolute joints and an end-effector. In the first method, an Inverse Kinematics (IK) algorithm based on the Newton-Raphson iterative method is applied to generate constrained joint-space trajectories corresponding to straight-line and curvilinear motions of the end effector in Cartesian space with finite jerk. The second approach describes Constant Screw Axis (CSA) trajectories which are generated using Machine Learning (ML) and Artificial Neural Networks (ANNs) techniques. The CSA method smooths the trajectory in the Special Euclidean (SE(3)) space. In the third approach, a multi-objective Swarm Intelligence (SI) trajectory generation algorithm is developed, where the IK problem is tackled using a combined SI-PoE ML technique resulting in a joint trajectory that avoids obstacles in the workspace, and satisfies the finite jerk constraint on end-effector while minimizing the torque profiles. The final method is a different approach to solving the IK problem using the Deep Q-Learning (DQN) Reinforcement Learning (RL) algorithm which can generate different joint space trajectories given the Cartesian end-effector path. For all methods above, the Newton-Euler recursive algorithm is implemented to compute the inverse dynamics, which generates the joint torques profiles. The simulated torque profiles are experimentally validated by feeding the generated joint trajectories to the Sawyer robotic arm through the developed Robot Operating System (ROS) - Python environment in the Software Development Kit (SDK) mode. The developed algorithms can be used to generate various trajectories for robotic arms (e.g. spacecraft servicing missions)

    A Systematic Literature Review of Path-Planning Strategies for Robot Navigation in Unknown Environment

    Get PDF
    The Many industries, including ports, space, surveillance, military, medicine and agriculture have benefited greatly from mobile robot technology.  An autonomous mobile robot navigates in situations that are both static and dynamic. As a result, robotics experts have proposed a range of strategies. Perception, localization, path planning, and motion control are all required for mobile robot navigation. However, Path planning is a critical component of a quick and secure navigation. Over the previous few decades, many path-planning algorithms have been developed. Despite the fact that the majority of mobile robot applications take place in static environments, there is a scarcity of algorithms capable of guiding robots in dynamic contexts. This review compares qualitatively mobile robot path-planning systems capable of navigating robots in static and dynamic situations. Artificial potential fields, fuzzy logic, genetic algorithms, neural networks, particle swarm optimization, artificial bee colonies, bacterial foraging optimization, and ant-colony are all discussed in the paper. Each method's application domain, navigation technique and validation context are discussed and commonly utilized cutting-edge methods are analyzed. This research will help researchers choose appropriate path-planning approaches for various applications including robotic cranes at the sea ports as well as discover gaps for optimization

    Multi-AUV Cooperative Target Hunting based on Improved Potential Field in a Surface-Water Environment

    Get PDF
    In this paper, target hunting aims to detect target and surround the detected target in a surface-water using Multiple Autonomous Underwater Vehicles (multi-AUV) in a given area. The main challenge in multi-AUV target hunting is the design of AUV\u27s motion path and coordination mechanism. To conduct the cooperative target hunting by multi-AUV in a surface-water environment, an integrated algorithm based on improved potential field (IPF) is proposed. First, a potential field function is established according to the information of the surface-water environment. Then, the dispersion degree, the homodromous degree, and district-difference degree are introduced to increase the cooperation of the multi-AUV system. Finally, the target hunting is solved by embedding the three kinds of degree into the potential field function. The simulation results show that the proposed approach is applicable and feasible for multi-AUV cooperative target hunting

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore