93 research outputs found

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Ī£\Sigma. Within the class of Filippov solutions, if Ī£\Sigma is attractive, one should expect solution trajectories to slide on Ī£\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Ī£\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Ī£\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Ī£\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Ī£\Sigma when Ī£\Sigma is attractive, what to expect when Ī£\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Ī£\Sigma is attractive, a solution trajectory indeed does remain near Ī£\Sigma, viz. sliding on Ī£\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Ī£\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Ī£\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Ī£\Sigma as long as Ī£\Sigma is attractive, and so that it will be leaving (a neighborhood of) Ī£\Sigma when Ī£\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Ī£\Sigma (or sliding motion on Ī£\Sigma) should have been taking place.Comment: 19 figure

    Qualitative Analysis of Polycycles in Filippov Systems

    Full text link
    In this paper, we are concerned about the qualitative behaviour of planar Filippov systems around some typical minimal sets, namely, polycycles. In the smooth context, a polycycle is a simple closed curve composed by a collection of singularities and regular orbits, inducing a first return map. Here, this concept is extended to Filippov systems by allowing typical singularities lying on the switching manifold. Our main goal consists in developing a method to investigate the unfolding of polycycles in Filippov systems. In addition, we applied this method to describe bifurcation diagrams of Filippov systems around certain polycycles

    Canards in stiction: on solutions of a friction oscillator by regularization

    Get PDF
    We study the solutions of a friction oscillator subject to stiction. This discontinuous model is non-Filippov, and the concept of Filippov solution cannot be used. Furthermore some Carath\'eodory solutions are unphysical. Therefore we introduce the concept of stiction solutions: these are the Carath\'eodory solutions that are physically relevant, i.e. the ones that follow the stiction law. However, we find that some of the stiction solutions are forward non-unique in subregions of the slip onset. We call these solutions singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We identify a repelling slow manifold that separates the forward slipping to forward sticking solutions, leading to a high sensitivity to the initial conditions. On this slow manifold we find canard trajectories, that have the physical interpretation of delaying the slip onset. We show with numerics that the regularized problem has a family of periodic orbits interacting with the canards. We observe that this family has a saddle stability and that it connects, in the rigid body limit, the two regular, slip-stick branches of the discontinuous problem, that were otherwise disconnected.Comment: Submitted to: SIADS. 28 pages, 12 figure

    Stochastic Perturbations of Periodic Orbits with Sliding

    Full text link
    Vector fields that are discontinuous on codimension-one surfaces are known as Filippov systems and can have attracting periodic orbits involving segments that are contained on a discontinuity surface of the vector field. In this paper we consider the addition of small noise to a general Filippov system and study the resulting stochastic dynamics near such a periodic orbit. Since a straight-forward asymptotic expansion in terms of the noise amplitude is not possible due to the presence of discontinuity surfaces, in order to quantitatively determine the basic statistical properties of the dynamics, we treat different parts of the periodic orbit separately. Dynamics distant from discontinuity surfaces is analyzed by the use of a series expansion of the transitional probability density function. Stochastically perturbed sliding motion is analyzed through stochastic averaging methods. The influence of noise on points at which the periodic orbit escapes a discontinuity surface is determined by zooming into the transition point. We combine the results to quantitatively determine the effect of noise on the oscillation time for a three-dimensional canonical model of relay control. For some parameter values of this model, small noise induces a significantly large reduction in the average oscillation time. By interpreting our results geometrically, we are able to identify four features of the relay control system that contribute to this phenomenon.Comment: 44 pages, 9 figures, submitted to: J Nonlin. Sc

    Bifurcations and Sequences of Elements in Non-Smooth Systems Cycles

    Get PDF
    This article describes the implementation of a novel method for detection and continuation of bifurcations in non- smooth complex dynamic systems -- The method is an alternative to existing ones for the follow-up of associated phe- nomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries) -- The topology of cycles in non-smooth sys- tems is determined by a group of ordered segments and points of different regions and their boundaries -- In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns -- To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process -- The characterization discriminates: a) types of points and segments; b) direction of sliding segments; and c) regions or discontinuity boundaries to which each element belongs -- When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topo- logical changes and hence bifurcations and associated phenomena -- This comparison has been tested in systems with discontinuities of three types: 1) impact; 2) Filippov and 3) first derivative discontinuities -- By coding well-known cy- cles as sequences of elements, an initial comparison database was built -- Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segment
    • ā€¦
    corecore