117 research outputs found

    Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation

    Get PDF
    This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses an Islanding-Dedicated System (IDS) per phase which will be logically combined with the conventional scheme, either in blocking or permissive modes. Each phase IDS is designed based on data mining techniques. The use of Artificial Neural Networks (ANNs) enables to reach higher accuracy and speed among other data mining techniques. The proposed scheme is trained and tested on a practical radial distribution system with six-1.67 MW Doubly-Fed Induction Generators (DFIG-DGs) wind turbines. Various scenarios of DFIG-DG operating conditions with different types of disturbances for critical breakers are simulated. Conventional passive anti-islanding relays incorrectly detected 67.3% of non-islanding scenarios. In other words, the security is as low as 32.3%. The obtained results indicate that the proposed approach can be used to theoretically increase the security to 100%. Therefore, the overall reliability of the system is substantially increased

    An effective passive islanding detection algorithm for distributed generations

    Get PDF
    Different issues will be raised and highlighted by emerging distributed generations (DGs) into modern power systems in which the islanding detection is the most important. In the islanding situation, a part of the system which consists of at least one DG, passive grid, and local load, becomes fully separated from the main grid. Several detection methods of islanding have been proposed in recent researches based on measured electrical parameters of the system. However, islanding detection based on local measurements suffers from the non-detection zone (NDZ) and undesirable detection during grid-connected events. This paper proposes a passive islanding detection algorithm for all types of DGs by appropriate combining the measured frequency, voltage, current, and phase angle and their rate of changes at the point of common coupling (PCC). The proposed algorithm detects the islanding situation, even with the exact zero power mismatches. Proposed algorithm discriminates between the islanding situation and non-islanding disturbances, such as short circuit faults, capacitor faults, and load switching in a proper time and without mal-operation. In addition, the performance of the proposed algorithm has been evaluated under different scenarios by performing the algorithm on the IEEE 13-bus distribution system.fi=vertaisarvioitu|en=peerReviewed

    Advanced ROCOF protection of distribution systems

    Get PDF
    When islanding occurs, power supply from the main grid is interrupted which causes a problem when distributed generators continue to provide power into distributed networks. An islanding situation should be detected accurately soon after the island is formed. Because failure to trip the islanded distributed resource can lead to a number of problems for the resource and the connected load. Although ROCOF islanding detection method is the most commonly employed anti-islanding protection technique, it provides fast detection and easily implementation. It is sensitive to the system disturbance. Therefore, the application of the ROCOF relay to detect system islanding has been limited. This thesis proposes a solution to enhance the performance of the ROCOF relay by cooperation with rate of change of power or v2/p interlock function. During system load variation, the false operation of ROCOF relay can be blocked effectively. It is validated by applied in grid-connected synchronous generator, Doubly-fed Induction generator (both simulation and experiment) and microgrid. The principle of rate of change of power or v2/p interlock function are presented in this thesis. The new interlock function v2/p with ROCOF relays works well for different types of DGs within a short detection time without introducing perturbation into the system, which are the advantages over other active and hybrid islanding detection methods. The performances characteristics of ROCOF relays for DGs islanding detection (i.e. frequency measuring methods, measuring windows, generator inertia constant, relay settings and load power factor) are investigated. In addition, two other islanding detection methods (impedance measurement (active method) and the Total Harmonic Method) are applied to the grid-connected DFIG distributed system, the comparison and effectiveness of these two methods utilized in islanding and load changing conditions are also discussed

    Setting frequency relays and voltage relays to protect synchronous distributed generators against islanding and abnormal frequencies and voltages

    Get PDF
    This study concerns frequency relays and voltage relays applied to the protection of synchronous distributed generators operating in reactive power control mode without a frequency regulation function. The effect of active and reactive powers combination, load power factor, and reactive power imbalance are investigated for their implication for the anti-islanding setting of the frequency relay. Results reveal that the effect of these factors must be considered when setting the relay for islanding detection. For the voltage relay, results reveal that the effect of active and reactive powers combination, load power factor, and active power imbalance must be considered when setting the relay for islanding detection. The effect of multi-stage tripping on the frequency relay ability to detect island was also investigated. Results show that multistage tripping can improve the anti-islanding performance of the frequency relay.Electrical EngineeringM. Tech. (Electrical Engineering

    Advanced ROCOF protection of distribution systems

    Get PDF
    When islanding occurs, power supply from the main grid is interrupted which causes a problem when distributed generators continue to provide power into distributed networks. An islanding situation should be detected accurately soon after the island is formed. Because failure to trip the islanded distributed resource can lead to a number of problems for the resource and the connected load. Although ROCOF islanding detection method is the most commonly employed anti-islanding protection technique, it provides fast detection and easily implementation. It is sensitive to the system disturbance. Therefore, the application of the ROCOF relay to detect system islanding has been limited. This thesis proposes a solution to enhance the performance of the ROCOF relay by cooperation with rate of change of power or v2/p interlock function. During system load variation, the false operation of ROCOF relay can be blocked effectively. It is validated by applied in grid-connected synchronous generator, Doubly-fed Induction generator (both simulation and experiment) and microgrid. The principle of rate of change of power or v2/p interlock function are presented in this thesis. The new interlock function v2/p with ROCOF relays works well for different types of DGs within a short detection time without introducing perturbation into the system, which are the advantages over other active and hybrid islanding detection methods. The performances characteristics of ROCOF relays for DGs islanding detection (i.e. frequency measuring methods, measuring windows, generator inertia constant, relay settings and load power factor) are investigated. In addition, two other islanding detection methods (impedance measurement (active method) and the Total Harmonic Method) are applied to the grid-connected DFIG distributed system, the comparison and effectiveness of these two methods utilized in islanding and load changing conditions are also discussed

    A robust islanding detection method with zero-non-detection zone for distribution systems with DG

    Get PDF
    This paper proposes a strategy for detecting unintentional islanding operations (IOs) in distribution networks (DNs) with distributed generation (DG), which eliminating the non-detection zone (NDZ). This hybrid method achieves a zero-NDZ by taking advantage of both passive and active methodologies for an inverter-based DG scenario. The passive-based part of the proposed method considers settings with low thresholds and is activated whenever they are surpassed. The following step uses a three-phase static RC load. This load is connected to intentionally force the frequency and its derivative to exceed the established thresholds. Thus, the events with zero power imbalance can be identified. Unlike other existing methods, this technique does not degrade the power quality (PQ) and does not require DG output power curtailment. The evaluation of the proposed strategy has been carried out through an extensive set of scenarios considering both islanding and non-islanding events. The islanding detection capabilities of the proposed method have been explored considering a custom-made DN test system and the test system recommended by the IEEE 929-2000 standard. The proposed method has a simple implementation, requires a low level of computational complexity, provides a high degree of reliability, and assures fast islanding detection.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.3 - Per a 2030, duplicar la taxa mundial de millora de l’eficiència energèticaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesPostprint (published version

    Islanding Detection in Distributed Generation

    Get PDF
    In this work, a case-study of distributed Generation System comprising of two 9 MW wind farms (each connected to a120 kv grid through a 20 km,25kv feeder),two 500 kW resistive loads and two .9MVAR filters, have been considered and studies are made on islanding detection using those above mentioned methods. The proposed techniques are tested on islanding and possible non-islanding conditions such as normal operation, sudden load change and tripping of other DG etc. and found to be highly effective in islanding detection at different target DG locations in the power distribution network including multiple DGs

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    Intelligent Passive Anti-Islanding Protection for Doubly Fed Induction Generators

    Get PDF
    Abstract The integration of wind generation units into power system introduces several issues including islanding operation
    corecore