32 research outputs found

    Optimal Perturbation Iteration Method for Solving Fractional Model of Damped Burgers’ Equation

    Get PDF
    The newly constructed optimal perturbation iteration procedure with Laplace transform is applied to obtain the new approximate semi-analytical solutions of the fractional type of damped Burgers’ equation. The classical damped Burgers’ equation is remodeled to fractional differential form via the Atangana–Baleanu fractional derivatives described with the help of the Mittag–Leffler function. To display the efficiency of the proposed optimal perturbation iteration technique, an extended example is deeply analyzed.This work was supported in part by the Basque Government, through project IT1207-19

    Radiotherapy cancer treatment model with fractional derivative coupled with linear-quadratic model

    Get PDF
    A mathematical model that simulates a radiotherapy cancer treatment process is presented in this thesis. The model takes two important radiobiological factors into consideration, which are repair and repopulation of cells. The model is used to simulate the fractionated radiotherapy treatment processes of six patients. The results give the population changes in the cells and the final volumes occupied by the normal and cancer cells. The model is formulated by integrating the Caputo fractional derivative with the previous cancer treatment model. Thereafter, the linear quadratic with the repopulation model is coupled into the model to account for the cells’ population decay due to radiation. The treatment processes are then simulated in MATLAB with numerical variables, numerical parameters, and radiation parameters. The numerical parameters which include the proliferation coefficients of cells, competition coefficients of cells, and the perturbation constant of the normal cells are obtained from a previous research. The radiation parameters are obtained from another previous research that reported clinical data of six patients treated with radiotherapy. From the reported clinical data, the patients had tumor volumes of 24.1cm 3, 17.4cm 3, 28.4cm 3 , 18.8cm 3, 3°.6cm3, and 12.6cm 3 and were treated with fractionated doses of 2.0 Gy for the first two patients and 1.8 Gy for the other four. Next, the integrity of the formulated model is established with the proof of the existence of unique solutions, the stability analysis, the sensitivity analysis, the bifurcation analysis, and the comparative analysis. Also, 96 radiation protocols are simulated by using the biologically effective dose formula. All these protocols are then used to obtain regression equations connecting the value of the Caputo fractional derivative with the fractionated radiation dose, and these regression equations are used to simulate various radiotherapy treatments in four different categories. The final tumor volumes, from the results of the simulations, are 3.58cm3 , 8.61cm3 , 5.68cm3 , 4.36cm3 , 5.75cm3 , and 6.12cm3. Meanwhile the volumes occupied by the normal cells are 23.87cm3, 17.29cm3, 28.1lcm3, 18.68cm3, 30.33cm3 , and 12.55cm3. The stability analysis shows that the model is asymptotically and exponentially stable. Also, the solutions of the simulations are unique and stable even there are changes in initial values. The sensitivity analysis shows that the most sensitive controllable model factor is the value of the Caputo fractional derivative and this model factor has bifurcation values. Furthermore, the comparative analysis shows that the fractional derivative model encompasses the memory effect of the radiotherapy process. The predicted simulated final tumor volumes obtained with the regression equations are then compared with the corresponding reported clinical final tumor volumes. The results of these comparisons show that the predictions have minimal errors, hence they are acceptable. Finally, optimal and complete treatment solutions are simulated and predicted

    FdeSolver: A Julia Package for Solving Fractional Differential Equations

    Full text link
    Implementing and executing numerical algorithms to solve fractional differential equations has been less straightforward than using their integer-order counterparts, posing challenges for practitioners who wish to incorporate fractional calculus in applied case studies. Hence, we created an open-source Julia package, FdeSolver, that provides numerical solutions for fractional-order differential equations based on product-integration rules, predictor-corrector algorithms, and the Newton-Raphson method. The package covers solutions for one-dimensional equations with orders of positive real numbers. For high-dimensional systems, the orders of positive real numbers are limited to less than (and equal to) one. Incommensurate derivatives are allowed and defined in the Caputo sense. Here, we summarize the implementation for a representative class of problems, provide comparisons with available alternatives in Julia and Matlab, describe our adherence to good practices in open research software development, and demonstrate the practical performance of the methods in two applications; we show how to simulate microbial community dynamics and model the spread of Covid-19 by fitting the order of derivatives based on epidemiological observations. Overall, these results highlight the efficiency, reliability, and practicality of the FdeSolver Julia package

    Modelling and Analysis of a Measles Epidemic Model with the Constant Proportional Caputo Operator

    Get PDF
    Despite the existence of a secure and reliable immunization, measles, also known as rubeola, continues to be a leading cause of fatalities globally, especially in underdeveloped nations. For investigation and observation of the dynamical transmission of the disease with the influence of vaccination, we proposed a novel fractional order measles model with a constant proportional (CP) Caputo operator. We analysed the proposed model’s positivity, boundedness, well-posedness, and biological viability. Reproductive and strength numbers were also verified to examine how the illness dynamically behaves in society. For local and global stability analysis, we introduced the Lyapunov function with first and second derivatives. In order to evaluate the fractional integral operator, we used different techniques to invert the PC and CPC operators. We also used our suggested model’s fractional differential equations to derive the eigenfunctions of the CPC operator. There is a detailed discussion of additional analysis on the CPC and Hilfer generalised proportional operators. Employing the Laplace with the Adomian decomposition technique, we simulated a system of fractional differential equations numerically. Finally, numerical results and simulations were derived with the proposed measles model. The intricate and vital study of systems with symmetry is one of the many applications of contemporary fractional mathematical control. A strong tool that makes it possible to create numerical answers to a given fractional differential equation methodically is symmetry analysis. It is discovered that the proposed fractional order model provides a more realistic way of understanding the dynamics of a measles epidemic.This research was funded by Basque Government: Grants: IT1555-22 and KK-2022/00090; MCIN/AEI 269.10.13039/501100011033: Grant PID2021-1235430B-C21/C22

    Nonlinear Systems

    Get PDF
    The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers

    Mathematical Modeling of Biological Systems

    Get PDF
    Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine

    New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

    Get PDF
    This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention

    Fractional derivative models for the spread of diseases

    Get PDF
    This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution.This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe
    corecore