258 research outputs found

    Comparison of in-sight and handheld navigation devices toward supporting industry 4.0 supply chains: First and last mile deliveries at the human level

    Get PDF
    Last (and First) mile deliveries are an increasingly important and costly component of supply chains especially those that require transport within city centres. With reduction in anticipated manufacturing and delivery timescales, logistics personnel are expected to identify the correct location (accurately) and supply the goods in appropriate condition (safe delivery). Moving towards more environmentally sustainable supply chains, the last/first mile of deliveries may be completed by a cyclist courier which could result in significant reductions in congestion and emissions in cities. In addition, the last metres of an increasing number of deliveries are completed on foot i.e. as a pedestrian. Although research into new technologies to support enhanced navigation capabilities is ongoing, the focus to date has been on technical implementations with limited studies addressing how information is perceived and actioned by a human courier. In the research reported in this paper a comparison study has been conducted with 24 participants evaluating two examples of state-of-the-art navigation aids to support accurate (right time and place) and safe (right condition) navigation. Participants completed 4 navigation tasks, 2 whilst cycling and 2 whilst walking. The navigation devices under investigation were a handheld display presenting a map and instructions and an in-sight monocular display presenting text and arrow instructions. Navigation was conducted in a real-world environment in which eye movements and device interaction were recorded using Tobii-Pro 2 eye tracking glasses. The results indicate that the handheld device provided better support for accurate navigation (right time and place), with longer but less frequent gaze interactions and higher perceived usability. The in-sight display supported improved situation awareness with a greater number of hazards acknowledged. The benefits and drawbacks of each device and use of visual navigation support tools are discussed

    The Potential for Augmented Reality to Bring Balance betweenthe Ease of Pedestrian Navigation and the Acquisition of Spatial Knowledge

    Get PDF
    Being completely lost in an unfamiliar environment can be inconvenient, stressful and, at times, even dangerous. Maps are the traditional tools used for guidance but many people find maps difficult to use. In recent years, new tools like outdoor Augmented Reality (AR) have become available which allow virtual navigation cues to be directly overlaid on the real world, potentially overcoming the limitations of maps. However, it has been hypothesized that lower effort invested in processing navigation guidance may lead to diminished spatial knowledge (SK) thereby making users of such navigation tools far more vulnerable to getting lost should the tools fail for any reason. This thesis explores the research question of how AR and maps compare as tools for pedestrian navigation guidance as well as for SK acquisition and if there is a potential for AR tools be developed that would balance the two. We present a series of studies to better understand the consequences of using AR in a pedestrian navigation tool. The first two studies compared time-on-task performance and user preferences for AR and Map navigation interfaces on an outdoor navigation task. The results were not aligned with expectations, which led us to build a controlled testing environment for comparing AR and map navigation. Using this simulated setting, our third study verified the assumption that AR can indeed result in more efficient navigation performance and it supported the hypothesis that this would come at the cost of weaker SK. In our fourth study, we used a dual task design to compare the relative cognitive resources required by map and AR interfaces. The quantitative data collected indicated that users could potentially accept additional workload designed to improve SK without incurring significantly more effort. Our fifth and final study explored an interface with additional AR cues that could potentially balance navigation guidance with SK acquisition. The contributions of this thesis include insights into performance issues relating to AR, a classification of user types based on navigation tool usage behavior, a testbed for simulating perfect AR tracking in a virtual setting, objective measures for determining route knowledge, the capacity that pedestrian navigation tool users may have for performing additional tasks, and guidelines that would be helpful in the design of pedestrian navigation tools

    Tactile Displays for Pedestrian Navigation

    Get PDF
    Existing pedestrian navigation systems are mainly visual-based, sometimes with an addition of audio guidance. However, previous research has reported that visual-based navigation systems require a high level of cognitive efforts, contributing to errors and delays. Furthermore, in many situations a person’s visual and auditory channels may be compromised due to environmental factors or may be occupied by other important tasks. Some research has suggested that the tactile sense can effectively be used for interfaces to support navigation tasks. However, many fundamental design and usability issues with pedestrian tactile navigation displays are yet to be investigated. This dissertation investigates human-computer interaction aspects associated with the design of tactile pedestrian navigation systems. More specifically, it addresses the following questions: What may be appropriate forms of wearable devices? What types of spatial information should such systems provide to pedestrians? How do people use spatial information for different navigation purposes? How can we effectively represent such information via tactile stimuli? And how do tactile navigation systems perform? A series of empirical studies was carried out to (1) investigate the effects of tactile signal properties and manipulation on the human perception of spatial data, (2) find out the effective form of wearable displays for navigation tasks, and (3) explore a number of potential tactile representation techniques for spatial data, specifically representing directions and landmarks. Questionnaires and interviews were used to gather information on the use of landmarks amongst people navigating urban environments for different purposes. Analysis of the results of these studies provided implications for the design of tactile pedestrian navigation systems, which we incorporated in a prototype. Finally, field trials were carried out to evaluate the design and address usability issues and performance-related benefits and challenges. The thesis develops an understanding of how to represent spatial information via the tactile channel and provides suggestions for the design and implementation of tactile pedestrian navigation systems. In addition, the thesis classifies the use of various types of landmarks for different navigation purposes. These contributions are developed throughout the thesis building upon an integrated series of empirical studies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Using the Default Option Bias to Influence Decision-Making While Driving

    Get PDF
    Gaining a better understanding of human–computer interaction in multiple-goal environments, such as driving, is critical as people increasingly use information technology to accomplish multiple tasks simultaneously. Extensive research shows that decision biases can be utilized as effective cues to guide user interaction in single-goal environments. This article is a first step toward understanding the effect of decision biases in multiple-goal environments. This study analyzed data from a field experiment during which a comparison was made between drivers’ decisions on parking lots in a single-goal environment and drivers’ decisions in a multiple-goal environment when being exposed to the default option bias. The article shows that the default option bias is effective in multiple-goal environments. The results have important implications for the design of human–computer interaction in multiple-goal environments

    PREFERENCE FOR MAP SCALE OF IN-CAR ROUTE GUIDANCE AND NAVIGATION SYSTEM

    Get PDF
    Usability issues of maps presented in-car Route Guidance and Navigation System (RGNS) may result in serious impacts on traffic safety. To obtain effective RGNS, evaluation of ‘user satisfaction’ with the system has played a prominent role, since designers can quantify drivers’ acceptance about presented information. An important variable related to design of RGNS interfaces refers to select appropriate scale for maps, since it interferes on legibility of maps. Map with good legibility may support drivers comprehend information easily and take decisions during driving task quickly. This paper evaluates drivers’ preference for scales used in maps of RGNS. A total of 52 subjects participated of an experiment performed in a parked car. Maps were designed at four different scales 1:1,000, 1:3,000, 1:6,000 and 1:10,000 for a route composed of 13 junctions. Map design was based on cartographic communication principles, such as perceptive grouping and figure-ground segregation. Based on studies cases, we conclude intermediate scales (1:6,000 and 1:3,000) were more acceptable among drivers compared to large scales (1:1,000) and small (1:10,000). RGNS should select scales for maps which supports drivers to quickly identify direction of the maneuver and, simultaneously, get information about surroundings of route. More results are presented and implications discusse

    Evidence from London taxi drivers of hierarchical route planning in a real-world environment

    Get PDF
    The ability to navigate a spatial environment strongly depends on how well individuals learn, represent and make use of their knowledge about the environment. In the past, research investigated these aspects separately and often in a virtual environment. The current work studied these three aspects of navigation in a real-real world setting to understand how humans navigate naturally in a complex, urban environment like London, UK. Of particular interest was to determine if there was evidence of hierarchical representations during route planning as found in previous behavioural, neuroscientific or computational studies. Most past studies have explored knowledge for simplistic environments or fragmented knowledge of real-world environments. By contrast, licensed London taxi drivers acquire a unique, almost perfect mental representation of the street network, the location of places and the traffic rules that apply to it. Here, the rare knowledge of these navigation experts was explored in three studies with novel approaches. First, to gain an understanding of the training process of unqualified taxi drivers, information from an interview with a teacher, training lessons and study material was collected, summarised and reported. A range of learning strategies was identified that was linked to theoretical, map-based learning and practical, in-situ experiences of London and pointed towards a segmented planning of routes through subgoal selection. Second, a potential mental segregation of London was studied with qualified taxi drivers through boundary drawings of specific London districts with a paper map to understand a potential hierarchical representation. Higher agreement was found for geographical structures and topically distinct districts surrounded by a linear, almost rectangular street network, whereas agreement was lowest for irregularly shaped districts with similarities to neighbouring areas. Finally, taxi drivers were asked to plan and then verbally recall each street they would take along routes between selected origin destination pairs. Audio recordings of these routes made it possible to relate the response times between individual streets to specific street network properties. The analysis using a linear mixed model indicated slower responses at upcoming turns and entering main roads, whereas boundary streets were recalled faster, as were finial streets when compared to initial street. No effects of Euclidean distance or detours were found. Observations from the training process indicate that a potential segregation of the environment, which might impact on later route planning, might be formed already through specific learning strategies. Faster response times for boundary streets support models in which planning is hierarchical. These findings extend past work on route planning in lab-based networks to real-world city street networks and highlight avenues for future research to explore and make use of real-world data

    Schematisation in Hard-copy Tactile Orientation Maps

    Get PDF
    This dissertation investigates schematisation of computer-generated tactile orientation maps that support mediation of spatial knowledge of unknown urban environments. Computergenerated tactile orientation maps are designed to provide the blind with an overall impression of their surroundings. Their details are displayed by means of elevated features that are created by embossers and can be distinguished by touch. The initial observation of this dissertation states that only very little information is actually transported through tactile maps owing to the coarse resolution of tactual senses and the cognitive effort involved in the serial exploration of tactile maps. However, the differences between computer-generated, embossed tactile maps and manufactured, deep-drawn tactile maps are significant. Therefore the possibilities and confines of communicating information through tactile maps produced with embossers is a primary area of research. This dissertation has been able to demonstrate that the quality of embossed prints is an almost equal alternative to traditionally manufactured deep-drawn maps. Their great advantage is fast and individual production and (apart from the initial procurement costs for the printer)low price, accessibility and easy understanding without the need of prior time-consuming training. Simplification of tactile maps is essential, even more so than in other maps. It can be achieved by selecting a limited number from all map elements available. Qualitative simplification through schematisation may present an additional option to simplification through quantitative selection. In this context schematisation is understood as cognitively motivated simplification of geometry and synchronised maintenance of topology. Rather than further reducing the number of displayed objects, the investigation concentrates on how the presentation of different forms of streets (natural vs. straightened) and junctions (natural vs. prototypical) affects the transfer of knowledge. In a second area of research, a thesis establishes that qualitative simplification of tactile orientation maps through schematisation can enhance their usability and make them easier to understand than maps that have not been schematised. The dissertation shows that simplifying street forms and limiting them to prototypical junctions does not only accelerate map exploration but also has a beneficial influence on retention performance. The majority of participants that took part in the investigation selected a combination of both as their preferred display option. Tactile maps that have to be tediously explored through touch, uncovering every detail, complicate attaining a first impression or an overall perception. A third area of research is examined, establishing which means could facilitate map readersâ options to discover certain objects on the map quickly and without possessing a complete overview. Three types of aids are examined: guiding lines leading from the frame of the map to the object, position indicators represented by position markers at the frame of the map and coordinate specifications found within a grid on the map. The dissertation shows that all three varieties can be realised by embossers. Although a guiding line proves to be fast in size A4 tactile maps containing only one target object and few distracting objects, it also impedes further exploration of the map (similar to the grid). In the following, advantages and drawbacks of the various aids in this and other applications are discussed. In conclusion the dissertation elaborates on the linking points of all three examinations. They connect and it is argued that cognitively motivated simplification should be a principle of construction for embossed tactile orientation maps in order to support their use and comprehension. A summary establishes the recommendations that result from this dissertation regarding construction of tactile orientation maps considering the limitations through embosser constraints. Then I deliberate how to adapt schematisation of other maps contingent to intended function, previous knowledge of the map reader, and the relation between the time in which knowledge is acquired and the time it is employed. Closing the dissertation, I provide an insight into its confines and deductions and finish with a prospective view to possible transfers of the findings to other applications, e.g. multimedia or interactive maps on pin-matrix displays and devices

    The role of route familiarity in traffic participants’ behaviour and transport psychology research:A systematic review

    Get PDF
    Studies of how transport behaviour (e.g., driving, cycling, and walking) is affected by practice and familiarity are not commonplace, in spite of the fact that much of our travel takes place on familiar, well-practiced routes. In other areas, it is well-established that repetition affects cognition, particularly memory and attention. The goals of the current systematic literature review were 1) to explore how researchers have described and examined the effects of people’s familiarity with routes and road types, and 2) to obtain a better insight into the cognitive processes, and behaviour that occur in familiar road environments. The systematic review was conducted based on the principles described in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Scopus’ database was searched systematically using predefined search combinations which involved (1) the transport modes of driving, cycling, and walking; (2) research methods that typically involve route- or situation-familiar participants (e.g., naturalistic studies, observational studies and field operational tests); and (3) various words associated with route familiarity (e.g., familiar, everyday, and commute). Ninety-four studies met all inclusion criteria. Results were analysed in terms of the cognitive and behavioural changes associated with familiarity, as reported in the studies. Route familiarity was typically reported to reduce the amount of cognitive control used to process the immediate environment and to increase mind wandering, compared to unfamiliar situations. Familiarity also increased recall accuracy and opportunities for self-regulatory behaviour, and decreased task difficulty. Familiarity appears to have large effects on how people attend to and process the environment. Given the proportion of time people spend travelling in familiar situations, this low attention, high familiarity state should be considered the default mode and as a more integral context for experimental, naturalistic and observational research in transport psychology
    • …
    corecore