7 research outputs found

    Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery

    Get PDF
    Recent research has revealed that image-based methods can enhance accuracy and safety in laser microsurgery. In this study, non-rigid tracking using surgical stereo imaging and its application to laser ablation is discussed. A recently developed motion estimation framework based on piecewise affine deformation modeling is extended by a mesh refinement step and considering texture information. This compensates for tracking inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate online application of the method, computational load is reduced by concurrent processing and affine-invariant fusion of tracking and refinement results. The residual latency-dependent tracking error is further minimized by Kalman filter-based upsampling, considering a motion model in disparity space. Accuracy is assessed in laparoscopic, beating heart, and laryngeal sequences with challenging conditions, such as partial occlusions and significant deformation. Performance is compared with that of state-of-the-art methods. In addition, the online capability of the method is evaluated by tracking two motion patterns performed by a high-precision parallel-kinematic platform. Related experiments are discussed for tissue substitute and porcine soft tissue in order to compare performances in an ideal scenario and in a setup mimicking clinical conditions. Regarding the soft tissue trial, the tracking error can be significantly reduced from 0.72 mm to below 0.05 mm with mesh refinement. To demonstrate online laser path adaptation during ablation, the non-rigid tracking framework is integrated into a setup consisting of a surgical Er:YAG laser, a three-axis scanning unit, and a low-noise stereo camera. Regardless of the error source, such as laser-to-camera registration, camera calibration, image-based tracking, and scanning latency, the ablation root mean square error is kept below 0.21 mm when the sample moves according to the aforementioned patterns. Final experiments regarding motion-compensated laser ablation of structurally deforming tissue highlight the potential of the method for vision-guided laser surgery.EU/FP/-ICT/28866

    A flexible access platform for robot-assisted minimally invasive surgery

    No full text
    Advances in Minimally Invasive Surgery (MIS) are driven by the clinical demand to reduce the invasiveness of surgical procedures so patients undergo less trauma and experience faster recoveries. These well documented benefits of MIS have been achieved through parallel advances in the technology and instrumentation used during procedures. The new and evolving field of Flexible Access Surgery (FAS), where surgeons access the operative site through a single incision or a natural orifice incision, is being promoted as the next potential step in the evolution of surgery. In order to achieve similar levels of success and adoption as MIS, technology again has its role to play in developing new instruments to solve the unmet clinical challenges of FAS. As procedures become less invasive, these instruments should not just address the challenges presented by the complex access routes of FAS, but should also build on the recent advances in pre- and intraoperative imaging techniques to provide surgeons with new diagnostic and interventional decision making capabilities. The main focus of this thesis is the development and applications of a flexible robotic device that is capable of providing controlled flexibility along curved pathways inside the body. The principal component of the device is its modular mechatronic joint design which utilises an embedded micromotor-tendon actuation scheme to provide independently addressable degrees of freedom and three internal working channels. Connecting multiple modules together allows a seven degree-of-freedom (DoF) flexible access platform to be constructed. The platform is intended for use as a research test-bed to explore engineering and surgical challenges of FAS. Navigation of the platform is realised using a handheld controller optimised for functionality and ergonomics, or in a "hands-free" manner via a gaze contingent control framework. Under this framework, the operator's gaze fixation point is used as feedback to close the servo control loop. The feasibility and potential of integrating multi-spectral imaging capabilities into flexible robotic devices is also demonstrated. A force adaptive servoing mechanism is developed to simplify the deployment, and improve the consistency of probe-based optical imaging techniques by automatically controlling the contact force between the probe tip and target tissue. The thesis concludes with the description of two FAS case studies performed with the platform during in-vivo porcine experiments. These studies demonstrate the ability of the platform to perform large area explorations within the peritoneal cavity and to provide a stable base for the deployment of interventional instruments and imaging probes

    Handbook of Vascular Biometrics

    Get PDF

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    testing coversheet item

    Get PDF
    corecore