5,733 research outputs found

    Adaptive grid based localized learning for multidimensional data

    Get PDF
    Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of Big Data synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework, and algorithmic mechanisms essential for knowledge discovery, especially in the domains of clustering, classification, dimensionality reduction, feature ranking, and feature selection. However, data mining algorithms are frequently challenged by the sparseness due to the high dimensionality of the datasets in such domains which is particularly detrimental to the performance of unsupervised learning algorithms. The motivation for the research presented in this dissertation is to develop novel data mining algorithms to address the challenges of high dimensionality, sparseness and large volumes of datasets by using a unique grid-based localized learning paradigm for data movement clustering and classification schema. The grid-based learning is recognized in data mining as these algorithms are inherently efficient since they reduce the search space by partitioning the feature space into effective partitions. However, these approaches have not been successfully devised for supervised learning algorithms or sparseness reduction algorithm as they require careful estimation of grid sizes, partitions and data movement error calculations. Grid-based localized learning algorithms can scale well with an increase in dimensionality and the size of the datasets. To fulfill the goal of designing and developing learning algorithms that can handle data sparseness, high data dimensionality, and large size of data, in a concurrent manner to avoid the feature selection biases, a set of novel data mining algorithms using grid-based localized learning principles are developed and presented. The first algorithm is a unique computational framework for feature ranking that employs adaptive grid-based data shrinking for feature ranking. This method addresses the limitations of existing feature ranking methods by using a scoring function that discovers and exploits dependencies from all the features in the data. Data shrinking principles are established and metricized to capture and exploit dependencies between features. The second core algorithmic contribution is a novel supervised learning algorithm that utilizes grid-based localized learning to build a nonparametric classification model. In this classification model, feature space is divided using uniform/non-uniform partitions and data space subdivision is performed using a grid structure which is then used to build a classification model using grid-based nearest-neighbor learning. The third algorithm is an unsupervised clustering algorithm that is augmented with data shrinking to enhance the clustering performance of the algorithm. This algorithm addresses the limitations of the existing grid-based data shrinking and clustering algorithms by using an adaptive grid-based learning. Multiple experiments on a diversified set of datasets evaluate and discuss the effectiveness of dimensionality reduction, feature selection, unsupervised and supervised learning, and the scalability of the proposed methods compared to the established methods in the literature

    Advancement of Computing on Large Datasets via Parallel Computing and Cyberinfrastructure

    Get PDF
    Large datasets require efficient processing, storage and management to efficiently extract useful information for innovation and decision-making. This dissertation demonstrates novel approaches and algorithms using virtual memory approach, parallel computing and cyberinfrastructure. First, we introduce a tailored user-level virtual memory system for parallel algorithms that can process large raster data files in a desktop computer environment with limited memory. The application area for this portion of the study is to develop parallel terrain analysis algorithms that use multi-threading to take advantage of common multi-core processors for greater efficiency. Second, we present two novel parallel WaveCluster algorithms that perform cluster analysis by taking advantage of discrete wavelet transform to reduce large data to coarser representations so data is smaller and more easily managed than the original data in size and complexity. Finally, this dissertation demonstrates an HPC gateway service that abstracts away many details and complexities involved in the use of HPC systems including authentication, authorization, and data and job management

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Assessment of Surface-Layer Coherent Structure Detection in Dual-Doppler Lidar Data Based on Virtual Measurements

    Get PDF
    Dual-Doppler lidar has become a useful tool to investigate the wind-field structure in two-dimensional planes. However, lidar pulse width and scan duration entail significant and complex averaging in the resulting retrieved wind-field components. The effects of these processes on the wind-field structure remain difficult to investigate with in situ measurements. Based on high resolution large-eddy simulation (LES) data for the surface layer, we performed virtual dual-Doppler lidar measurements and two-dimensional data retrievals. Applying common techniques (integral length scale computation, wavelet analysis, two-dimensional clustering of low-speed streaks) to detect and quantify the length scales of the occurring coherent structures in both the LES and the virtual lidar wind fields, we found that, (i) dual-Doppler lidar measurements overestimate the correlation length due to inherent averaging processes, (ii) the wavelet analysis of lidar data produces reliable results, provided the length scales exceed a lower threshold as a function of the lidar resolution, and (iii) the low-speed streak clusters are too small to be detected directly by the dual-Doppler lidar. Furthermore, we developed and tested a method to correct the integral scale overestimation that, in addition to the dual-Doppler lidar, only requires high-resolution wind-speed variance measurements, e.g. at a tower or energy balance station.DFG/RA 617/19-
    • …
    corecore