754 research outputs found

    Asymptotic expressions for the nearest and furthest dislocations in a pile-up against a grain boundary

    Get PDF
    In 1965, Armstrong and Head (Acta Metall. 13(7):759–764, 1965) explored the problem of a pile-up of screw dislocations against a grain boundary. They used numerical methods to determine the positions of the dislocations in the pile-up and they were able to fit approximate formulae for the locations of the first and last dislocations. These formulae were used to gain insights into the Hall-Petch relationship. More recently, Voskoboinikov et al. (Phil. Mag. Lett. 87(9):669-676, 2007) used asymptotic techniques to study the equivalent problem of a pile-up of a large number of screw dislocations against a bimetallic interface.\ud \ud In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymptotic expressions for the formulae proposed by Armstrong and Head. The further extension of these techniques to more general pile-ups is also outlined. As a result of this work, we show that a pile-up against a grain boundary can become equivalent to a pile-up against a locked dislocation in the case where the mismatch across the boundary is small

    Dealing with dependent uncertainty in modelling : a comparative study case through the airy equation

    Full text link
    The consideration of uncertainty in differential equations leads to the emergent area of random differential equations. Under this approach, inputs become random variables and/or stochastic processes. Often one assumes that inputs are independent, a hypothesis that simplifies the mathematical treatment although it could not bemet in applications. In this paper,we analyse, through the Airy equation, the influence of statistical dependence of inputs on the output, computing its expectation and standard deviation by Fröbenius and Polynomial Chaos methods.The results are compared with Monte Carlo sampling. The analysis is conducted by the Airy equation since, as in the deterministic scenario its solutions are highly oscillatory, it is expected that differences will be better highlighted. To illustrate our study, and motivated by the ubiquity of Gaussian random variables in numerous practical problems, we assume that inputs follow a multivariate Gaussian distribution throughout the paper. The application of Fröbenius method to solve Airy equation is based on an extension of the method to the case where inputs are dependent. The numerical results show that the existence of statistical dependence among the inputs and its magnitude entails changes on the variability of the output.This work has been partially supported by the Ministerio de Economia y Competitividad Grants MTM2009-08587 and DPI2010-20891-C02-01 and Universitat Politecnica de Valencia Grant PAID06-11-2070.Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD.; Villanueva Micó, RJ. (2013). Dealing with dependent uncertainty in modelling : a comparative study case through the airy equation. Abstract and Applied Analysis. 2013(2796):1-12. https://doi.org/10.1155/2013/279642S11220132796Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J. C., Jódar, L., & Villafuerte, L. (2010). Numerical solution of random differential initial value problems: Multistep methods. Mathematical Methods in the Applied Sciences, 34(1), 63-75. doi:10.1002/mma.1331Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008Soize, C., & Ghanem, R. (2004). Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure. SIAM Journal on Scientific Computing, 26(2), 395-410. doi:10.1137/s1064827503424505Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630Iserles, A. (2002). Think globally, act locally: Solving highly-oscillatory ordinary differential equations. Applied Numerical Mathematics, 43(1-2), 145-160. doi:10.1016/s0168-9274(02)00122-

    Wannier-Stark resonances in optical and semiconductor superlattices

    Get PDF
    In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static force. Originally this problem was formulated for a crystal electron subject to a static electric field and it is nowadays known as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems such as optical lattices or semiconductor superlattices.Comment: 94 pages, 41 figures, typos corrected, references adde

    Strong disorder RG approach of random systems

    Full text link
    There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant r\^ole over quantum, thermal, or stochastic fluctuations : these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations.Comment: review article, 195 pages, 36 figures; final version to be published in Physics Report
    corecore