45,380 research outputs found

    Multi-field approach in mechanics of structural solids

    Get PDF
    We overview the basic concepts, models, and methods related to the multi-field continuum theory of solids with complex structures. The multi-field theory is formulated for structural solids by introducing a macrocell consisting of several primitive cells and, accordingly, by increasing the number of vector fields describing the response of the body to external factors. Using this approach, we obtain several continuum models and explore their essential properties by comparison with the original structural models. Static and dynamical problems as well as the stability problems for structural solids are considered. We demonstrate that the multi-field approach gives a way to obtain families of models that generalize classical ones and are valid not only for long-, but also for short-wavelength deformations of the structural solid. Some examples of application of the multi-field theory and directions for its further development are also discussed.Comment: 25 pages, 18 figure

    Robust aerodynamic design of variable speed wind turbine rotors

    Get PDF
    This study focuses on the robust aerodynamic design of the bladed rotor of small horizontal axis wind turbines. The optimization process also considers the effects of manufacturing and assembly tolerances on the yearly energy production. The aerodynamic performance of the rotors so designed has reduced sensitivity to manufacturing and assembly errors. The geometric uncertainty affecting the rotor shape is represented by normal distributions of the pitch angle of the blades, and the twist angle and chord of their airfoils. The aerodynamic module is a blade element momentum theory code. Both Monte Carlo-based and the Univariate ReducedQuadrature technique, a novel deterministic uncertainty propagationmethod, are used. The performance of the two approaches is assessed both interms of accuracy and computational speed. The adopted optimization method is based on a hybrid multi-objective evolutionary strategy. The presented results highlight that the sensitivity of the yearly production to geometric uncertainties can be reduced by reducing the rotational speed and increasing the aerodynamic blade loads

    Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions

    Full text link
    In this paper, we develop a numerical approach based on Chaos expansions to analyze the sensitivity and the propagation of epistemic uncertainty through a queueing systems with breakdowns. Here, the quantity of interest is the stationary distribution of the model, which is a function of uncertain parameters. Polynomial chaos provide an efficient alternative to more traditional Monte Carlo simulations for modelling the propagation of uncertainty arising from those parameters. Furthermore, Polynomial chaos expansion affords a natural framework for computing Sobol' indices. Such indices give reliable information on the relative importance of each uncertain entry parameters. Numerical results show the benefit of using Polynomial Chaos over standard Monte-Carlo simulations, when considering statistical moments and Sobol' indices as output quantities

    Efficiency of different numerical methods for solving Redfield equations

    Get PDF
    The numerical efficiency of different schemes for solving the Liouville-von Neumann equation within multilevel Redfield theory has been studied. Among the tested algorithms are the well-known Runge-Kutta scheme in two different implementations as well as methods especially developed for time propagation: the Short Iterative Arnoldi, Chebyshev and Newtonian propagators. In addition, an implementation of a symplectic integrator has been studied. For a simple example of a two-center electron transfer system we discuss some aspects of the efficiency of these methods to integrate the equations of motion. Overall for time-independent potentials the Newtonian method is recommended. For time-dependent potentials implementations of the Runge-Kutta algorithm are very efficient
    • 

    corecore