255 research outputs found

    Machine-learning-based estimation of room acoustic parameters

    Get PDF
    Traditional methods to study sound propagation inside rooms can be divided in two approaches: geometrical models and wave-based models. In the former, sound is analyzed as rays, giving a valid approximation for high frequencies while failing to model certain wave effects such as diffraction or inference. The latter, finds solutions for the wave equation, providing better accuracy at the cost of much higher computational complexity. This thesis presents a proof of concept for a novel machine learning method to estimate a set of typical room acoustics parameters using only geometrical information as input features. First, a room acoustics dataset composed of real world acoustical measurements is analyzed and processed using microphone array encoding techniques to extract room impulse responses and acoustical absorption area for multiple directions. The dataset is explored to identify correlation between features and general properties, including a low dimensionality representation for visualization. The proposed method uses geometrical features as input for a neural network model that estimates room acoustics parameters, such as reverberation time (T60), and early decay time (EDT). For reverberation time, this model is evaluated against the Sabine method and the results show much higher accuracy, especially at low frequencies. The method is then expanded to include input features for the locations of the source and microphone, where the results also achieve high performance. Furthermore, an hyperparameter optimization procedure using random search reveals three main findings. First, that a large range of neural networks architectures, even with very few trainable parameters, achieve high performance. Second, the depth of the models has little influence on the results. Third, the benefit of increasing the amount of training data examples for a single loudspeaker saturates after around 100 examples

    Assessing HRTF preprocessing methods for Ambisonics rendering through perceptual models

    Get PDF
    Binaural rendering of Ambisonics signals is a common way to reproduce spatial audio content. Processing Ambisonics signals at low spatial orders is desirable in order to reduce complexity, although it may degrade the perceived quality, in part due to the mismatch that occurs when a low-order Ambisonics signal is paired with a spatially dense head-related transfer function (HRTF). In order to alleviate this issue, the HRTF may be preprocessed so its spatial order is reduced. Several preprocessing methods have been proposed, but they have not been thoroughly compared yet. In this study, nine HRTF preprocessing methods were used to render anechoic binaural signals from Ambisonics representations of orders 1 to 44, and these were compared through perceptual hearing models in terms of localisation performance, externalisation and speech reception. This assessment was supported by numerical analyses of HRTF interpolation errors, interaural differences, perceptually-relevant spectral differences, and loudness stability. Models predicted that the binaural renderings’ accuracy increased with spatial order, as expected. A notable effect of the preprocessing method was observed: whereas all methods performed similarly at the highest spatial orders, some were considerably better at lower orders. A newly proposed method, BiMagLS, displayed the best performance overall and is recommended for the rendering of bilateral Ambisonics signals. The results, which were in line with previous literature, indirectly validate the perceptual models’ ability to predict listeners’ responses in a consistent and explicable manner

    Reproducing personal sound zones using a hybrid synthesis of dynamic and parametric loudspeakers

    Full text link

    Methods and reference data for middle ear transfer functions

    Full text link
    Human temporal bone specimens are used in experiments measuring the sound transfer of the middle ear, which is the standard method used in the development of active and passive middle ear implants. Statistical analyses of these experiments usually require that the TB samples are representative of the population of non-pathological middle ears. Specifically, this means that the specimens must be mechanically well-characterized. We present an in-depth statistical analysis of 478 data sets of middle ear transfer functions (METFs) from different laboratories. The data sets are preprocessed and various contributions to the variance of the data are evaluated. We then derive a statistical range as a reference against which individual METF measurements may be validated. The range is calculated as the two-sided 95% tolerance interval at audiological frequencies. In addition, the mean and 95% confidence interval of the mean are given as references for assessing the validity of a sample group. Finally, we provide a suggested procedure for measuring METFs using the methods described herein

    Effizientes binaurales Rendering von virtuellen akustischen Realitäten : technische und wahrnehmungsbezogene Konzepte

    Get PDF
    Binaural rendering aims to immerse the listener in a virtual acoustic scene, making it an essential method for spatial audio reproduction in virtual or augmented reality (VR/AR) applications. The growing interest and research in VR/AR solutions yielded many different methods for the binaural rendering of virtual acoustic realities, yet all of them share the fundamental idea that the auditory experience of any sound field can be reproduced by reconstructing its sound pressure at the listener's eardrums. This thesis addresses various state-of-the-art methods for 3 or 6 degrees of freedom (DoF) binaural rendering, technical approaches applied in the context of headphone-based virtual acoustic realities, and recent technical and psychoacoustic research questions in the field of binaural technology. The publications collected in this dissertation focus on technical or perceptual concepts and methods for efficient binaural rendering, which has become increasingly important in research and development due to the rising popularity of mobile consumer VR/AR devices and applications. The thesis is organized into five research topics: Head-Related Transfer Function Processing and Interpolation, Parametric Spatial Audio, Auditory Distance Perception of Nearby Sound Sources, Binaural Rendering of Spherical Microphone Array Data, and Voice Directivity. The results of the studies included in this dissertation extend the current state of research in the respective research topic, answer specific psychoacoustic research questions and thereby yield a better understanding of basic spatial hearing processes, and provide concepts, methods, and design parameters for the future implementation of technically and perceptually efficient binaural rendering.Binaurales Rendering zielt darauf ab, dass der Hörer in eine virtuelle akustische Szene eintaucht, und ist somit eine wesentliche Methode für die räumliche Audiowiedergabe in Anwendungen der virtuellen Realität (VR) oder der erweiterten Realität (AR – aus dem Englischen Augmented Reality). Das wachsende Interesse und die zunehmende Forschung an VR/AR-Lösungen führte zu vielen verschiedenen Methoden für das binaurale Rendering virtueller akustischer Realitäten, die jedoch alle die grundlegende Idee teilen, dass das Hörerlebnis eines beliebigen Schallfeldes durch die Rekonstruktion seines Schalldrucks am Trommelfell des Hörers reproduziert werden kann. Diese Arbeit befasst sich mit verschiedenen modernsten Methoden zur binauralen Wiedergabe mit 3 oder 6 Freiheitsgraden (DoF – aus dem Englischen Degree of Freedom), mit technischen Ansätzen, die im Kontext kopfhörerbasierter virtueller akustischer Realitäten angewandt werden, und mit aktuellen technischen und psychoakustischen Forschungsfragen auf dem Gebiet der Binauraltechnik. Die in dieser Dissertation gesammelten Publikationen befassen sich mit technischen oder wahrnehmungsbezogenen Konzepten und Methoden für effizientes binaurales Rendering, was in der Forschung und Entwicklung aufgrund der zunehmenden Beliebtheit von mobilen Verbraucher-VR/AR-Geräten und -Anwendungen zunehmend an Relevanz gewonnen hat. Die Arbeit ist in fünf Forschungsthemen gegliedert: Verarbeitung und Interpolation von Außenohrübertragungsfunktionen, parametrisches räumliches Audio, auditive Entfernungswahrnehmung ohrnaher Schallquellen, binaurales Rendering von sphärischen Mikrofonarraydaten und Richtcharakteristik der Stimme. Die Ergebnisse der in dieser Dissertation enthaltenen Studien erweitern den aktuellen Forschungsstand im jeweiligen Forschungsfeld, beantworten spezifische psychoakustische Forschungsfragen und führen damit zu einem besseren Verständnis grundlegender räumlicher Hörprozesse, und liefern Konzepte, Methoden und Gestaltungsparameter für die zukünftige Umsetzung eines technisch und wahrnehmungsbezogen effizienten binauralen Renderings.BMBF, 03FH014IX5, Natürliche raumbezogene Darbietung selbsterzeugter Schallereignisse in virtuellen auditiven Umgebungen (NarDasS

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Optimization and improvements in spatial sound reproduction systems through perceptual considerations

    Full text link
    [ES] La reproducción de las propiedades espaciales del sonido es una cuestión cada vez más importante en muchas aplicaciones inmersivas emergentes. Ya sea en la reproducción de contenido audiovisual en entornos domésticos o en cines, en sistemas de videoconferencia inmersiva o en sistemas de realidad virtual o aumentada, el sonido espacial es crucial para una sensación de inmersión realista. La audición, más allá de la física del sonido, es un fenómeno perceptual influenciado por procesos cognitivos. El objetivo de esta tesis es contribuir con nuevos métodos y conocimiento a la optimización y simplificación de los sistemas de sonido espacial, desde un enfoque perceptual de la experiencia auditiva. Este trabajo trata en una primera parte algunos aspectos particulares relacionados con la reproducción espacial binaural del sonido, como son la escucha con auriculares y la personalización de la Función de Transferencia Relacionada con la Cabeza (Head Related Transfer Function - HRTF). Se ha realizado un estudio sobre la influencia de los auriculares en la percepción de la impresión espacial y la calidad, con especial atención a los efectos de la ecualización y la consiguiente distorsión no lineal. Con respecto a la individualización de la HRTF se presenta una implementación completa de un sistema de medida de HRTF y se introduce un nuevo método para la medida de HRTF en salas no anecoicas. Además, se han realizado dos experimentos diferentes y complementarios que han dado como resultado dos herramientas que pueden ser utilizadas en procesos de individualización de la HRTF, un modelo paramétrico del módulo de la HRTF y un ajuste por escalado de la Diferencia de Tiempo Interaural (Interaural Time Difference - ITD). En una segunda parte sobre reproducción con altavoces, se han evaluado distintas técnicas como la Síntesis de Campo de Ondas (Wave-Field Synthesis - WFS) o la panoramización por amplitud. Con experimentos perceptuales se han estudiado la capacidad de estos sistemas para producir sensación de distancia y la agudeza espacial con la que podemos percibir las fuentes sonoras si se dividen espectralmente y se reproducen en diferentes posiciones. Las aportaciones de esta investigación pretenden hacer más accesibles estas tecnologías al público en general, dada la demanda de experiencias y dispositivos audiovisuales que proporcionen mayor inmersión.[CA] La reproducció de les propietats espacials del so és una qüestió cada vegada més important en moltes aplicacions immersives emergents. Ja siga en la reproducció de contingut audiovisual en entorns domèstics o en cines, en sistemes de videoconferència immersius o en sistemes de realitat virtual o augmentada, el so espacial és crucial per a una sensació d'immersió realista. L'audició, més enllà de la física del so, és un fenomen perceptual influenciat per processos cognitius. L'objectiu d'aquesta tesi és contribuir a l'optimització i simplificació dels sistemes de so espacial amb nous mètodes i coneixement, des d'un criteri perceptual de l'experiència auditiva. Aquest treball tracta, en una primera part, alguns aspectes particulars relacionats amb la reproducció espacial binaural del so, com són l'audició amb auriculars i la personalització de la Funció de Transferència Relacionada amb el Cap (Head Related Transfer Function - HRTF). S'ha realitzat un estudi relacionat amb la influència dels auriculars en la percepció de la impressió espacial i la qualitat, dedicant especial atenció als efectes de l'equalització i la consegüent distorsió no lineal. Respecte a la individualització de la HRTF, es presenta una implementació completa d'un sistema de mesura de HRTF i s'inclou un nou mètode per a la mesura de HRTF en sales no anecoiques. A mès, s'han realitzat dos experiments diferents i complementaris que han donat com a resultat dues eines que poden ser utilitzades en processos d'individualització de la HRTF, un model paramètric del mòdul de la HRTF i un ajustament per escala de la Diferencià del Temps Interaural (Interaural Time Difference - ITD). En una segona part relacionada amb la reproducció amb altaveus, s'han avaluat distintes tècniques com la Síntesi de Camp d'Ones (Wave-Field Synthesis - WFS) o la panoramització per amplitud. Amb experiments perceptuals, s'ha estudiat la capacitat d'aquests sistemes per a produir una sensació de distància i l'agudesa espacial amb que podem percebre les fonts sonores, si es divideixen espectralment i es reprodueixen en diferents posicions. Les aportacions d'aquesta investigació volen fer més accessibles aquestes tecnologies al públic en general, degut a la demanda d'experiències i dispositius audiovisuals que proporcionen major immersió.[EN] The reproduction of the spatial properties of sound is an increasingly important concern in many emerging immersive applications. Whether it is the reproduction of audiovisual content in home environments or in cinemas, immersive video conferencing systems or virtual or augmented reality systems, spatial sound is crucial for a realistic sense of immersion. Hearing, beyond the physics of sound, is a perceptual phenomenon influenced by cognitive processes. The objective of this thesis is to contribute with new methods and knowledge to the optimization and simplification of spatial sound systems, from a perceptual approach to the hearing experience. This dissertation deals in a first part with some particular aspects related to the binaural spatial reproduction of sound, such as listening with headphones and the customization of the Head Related Transfer Function (HRTF). A study has been carried out on the influence of headphones on the perception of spatial impression and quality, with particular attention to the effects of equalization and subsequent non-linear distortion. With regard to the individualization of the HRTF a complete implementation of a HRTF measurement system is presented, and a new method for the measurement of HRTF in non-anechoic conditions is introduced. In addition, two different and complementary experiments have been carried out resulting in two tools that can be used in HRTF individualization processes, a parametric model of the HRTF magnitude and an Interaural Time Difference (ITD) scaling adjustment. In a second part concerning loudspeaker reproduction, different techniques such as Wave-Field Synthesis (WFS) or amplitude panning have been evaluated. With perceptual experiments it has been studied the capacity of these systems to produce a sensation of distance, and the spatial acuity with which we can perceive the sound sources if they are spectrally split and reproduced in different positions. The contributions of this research are intended to make these technologies more accessible to the general public, given the demand for audiovisual experiences and devices with increasing immersion.Gutiérrez Parera, P. (2020). Optimization and improvements in spatial sound reproduction systems through perceptual considerations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/142696TESI
    corecore