3,630 research outputs found

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    Observer-based tuning of two-inertia servo-drive systems with integrated SAW torque transducers

    Get PDF
    This paper proposes controller design and tuning methodologies that facilitate the rejection of periodic load-side disturbances applied to a torsional mechanical system while simultaneously compensating for the observer’s inherent phase delay. This facilitates the use of lower-bandwidth practically realizable disturbance observers. The merits of implementing full- and reduced-order observers are investigated, with the latter being implemented with a new low-cost servo-machine-integrated highband width torque-sensing device based on surface acoustic wave (SAW) technology. Specifically, the authors’ previous work based on proportional–integral–derivative (PID) and resonance ratio control (RRC) controllers (IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1226–1237, Aug. 2006) is augmented with observer disturbance feedback. It is shown that higher-bandwidth disturbance observers are required to maximize disturbance attenuation over the low-frequency band (as well as the desired rejection frequency), thereby attenuating a wide range of possible frequencies. In such cases, therefore, it is shown that the RRC controller is the preferred solution since it can employ significantly higher observer bandwidth, when compared to PID counterparts, by virtue of reduced noise sensitivity. Furthermore, it is demonstrated that the prototype servo-machine-integrated 20-N · mSAWtorque transducer is not unduly affected by machine-generated electromagnetic noise and exhibits similar dynamic behavior as a conventional instrument inline torque transducer

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure

    Application of Non-Model Dependent Hybrid Higher-Order Differential Feedback Controller on Crane System

    Get PDF
    Gantry Crane is a machine used for shipping of goods from one point to another. Speed, accuracy and safety are of paramount importance in gantry crane (GC) operation, but operating GC results in unwanted sway which degrades the accuracy and safety. In this paper, hybrid control schemes are proposed for precise trolley position control and sway suppression in GC systems. Output Based input shaping (OBIS) filter was designed using the output of the system for sway suppression and proportional integral derivative (PID), linear quadratic regulator (LQR), higher order differential feedback (HODF) controllers were incorporated separately for precise trolley position control. Based on Simulation studies and analysis, it was observed that LQR-OBIS controller shown more precise tracking and higher sway reduction control. But HODFC-OBIS is a model-free control schemes hence more robust

    Genetic algorithm optimization and control system design of flexible structures

    Get PDF
    This paper presents an investigation into the deployment of genetic algorithm (GA)-based controller design and optimization for vibration suppression in flexible structures. The potential of GA is explored in three case studies. In the first case study, the potential of GA is demonstrated in the development and optimization of a hybrid learning control scheme for vibration control of flexible manipulators. In the second case study, an active control mechanism for vibration suppression of flexible beam structures using GA optimization technique is proposed. The third case study presents the development of an effective adaptive command shaping control scheme for vibration control of a twin rotor system, where GA is employed to optimize the amplitudes and time locations of the impulses in the proposed control algorithm. The effectiveness of the proposed control schemes is verified in both an experimental and a simulation environment, and their performances are assessed in both the time and frequency domains

    Simple Pole Placement Controller for Elastic Joint Manipulator

    Get PDF
    This paper presents investigations into the development of simple pole placement controller for tip angular position tracking and deflection reduction of an elastic joint manipulator system. A Quanser elastic joint manipulator is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. The pole placement controller is designed based on integral state feedback structure and the feedback gain is computed based on the desired time response specifications of tip angular position. The proposed control scheme is also compared with a hybrid Linear Quadratic Regulator (LQR) with input shaper control scheme. The performances of the control schemes are assessed in terms of tip angular tracking capability, level of deflection angle reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    MODELLING AND CONTROL OF A TWO-LINK RIGID-FLEXIBLE MANIPULATOR

    Get PDF
    The literature lacks data on the reliability of 3D models created by Autodesk Inventor software and imported to MATLAB Simulink software in comparison to mathematically generated models. In this contribution, a two-link rigid-flexible manipulator modelled in two different methods was demonstrated, one of which is using Lagrange equations and Finite Element Method to generate a mathematical model of the manipulator, and the other is creating a 3D model with the aid of Autodesk Inventor then import to MATLAB Simulink, both models were subsequently controlled by three types of controllers, conventional PID controller, LQR controller, and LQG controller. The research demonstrated the performance of the two models with response to the three types of controllers. Achieved results have proven that the Autodesk Inventor is considered a reliable tool for modelling mechanical systems. Results have also confirmed that modern controllers, i.e., LQR and LQG controllers perform much better than conventional PID controllers with regards to the manipulator movement. The implementation of Autodesk Inventor along with MATLAB Simulink indicates that the Autodesk Inventor can be considered as an instrumental tool for designers and engineers. The results enable future developments in the frontier area of robotics and mechanical systems, where sophisticated models could be generated by Autodesk Inventor instead of being modelled mathematically which will benefit engineers and designers by saving time and effort consumed in modelling using mathematical equations, and by reducing the potential errors associated with such modelling technique
    corecore