26,706 research outputs found

    Life cycle assessment (LCA) applied to the process industry: a review

    Get PDF
    Purpose : Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations. Method : This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. Results : The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions. Conclusions : The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry

    Multi-objective optimisation: algorithms and application to computer-aided molecular and process design

    Get PDF
    Computer-Aided Molecular Design (CAMD) has been put forward as a powerful and systematic technique that can accelerate the identification of new candidate molecules. Given the benefits of CAMD, the concept has been extended to integrated molecular and process design, usually referred to as Computer-Aided Molecular and Process Design (CAMPD). In CAMPD approaches, not only is the interdependence between the properties of the molecules and the process performance captured, but it is also possible to assess the optimal overall performance of a given fluid using an objective function that may be based on process economics, energy efficiency, or environmental criteria. Despite the significant advances made in the field of CAM(P)D, there are remaining challenges in handling the complexities arising from the large mixed-integer nonlinear structure-property and process models and the presence of conflicting performance criteria that cannot be easily merged into a single metric. Many of the algorithms proposed to date, however, resort to single-objective decomposition-based approaches. To overcome these challenges, a novel CAMPD optimisation framework is proposed, in the first part of thesis, in the context of identifying optimal amine solvents for carbon dioxide (CO2) chemical absorption. This requires development and validation of a model that enables the prediction of process performance metrics for a wide range of solvents for which no experimental data exist. An equilibrium-stage model that incorporates the SAFT-Îł Mie group contribution approach is proposed to provide an appropriate balance between accuracy and predictive capability with varying molecular design spaces. In order to facilitate the convergence behaviour of the process-molecular model, a tailored initialisation strategy is established based on the inside-out algorithm. Novel feasibility tests that are capable of recognising infeasible regions of molecular and process domains are developed and incorporated into an outer-approximation framework to increase solution robustness. The efficiency of the proposed algorithm is demonstrated by applying it to the design of CO2 chemical absorption processes. The algorithm is found to converge successfully in all 150 runs carried out. To derive greater insights into the interplay between solvent and process performance, it is desirable to consider multiple objectives. In the second part of the thesis, we thus explore the relative performance of five multi-objective optimisations (MOO) solution techniques, modified from the literature to address nonconvex MINLPs, on CAM(P)D problems to gain a better understanding of the performance of different algorithms in identifying the Pareto front efficiently. The combination of the sandwich algorithm with a multi-level single-linkage algorithm to solve nonconvex subproblems is found to perform best on average. Next, a robust algorithm for bi-objective optimisation (BOO), the SDNBI algorithm, is designed to address the theoretical and numerical challenges associated with the solution of general nonconvex and discrete BOO problems. The main improvements in the development of the algorithm are focused on the effective exploration of the nonconvex regions of the Pareto front and the early identification of regions where no additional Pareto solutions exist. The performance of the algorithm is compared to that of the sandwich algorithm and the modified normal boundary intersection method (mNBI) over a set of literature benchmark problems and molecular design problems. The SDNBI found to provide the most evenly distributed approximation of the Pareto front as well as useful information on regions of the objective space that do not contain a nondominated point. The advances in this thesis can accelerate the discovery of novel solvents for CO2 capture that can achieve improved process performance. More broadly, the modelling and algorithmic development presented extend the applicability of CAMPD and MOO based CAMD/CAMPD to a wider range of applications.Open Acces

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Application of response surface methodology to laser-induced breakdown spectroscopy : influences of hardware configuration

    Get PDF
    Response Surface Methodology (RSM) was employed to optimise LIBS analysis of single crystal silicon at atmospheric pressure and under vacuum conditions (pressure ~10-6mbar). Multivariate analysis software (StatGraphics 5.1) was used to design and analyse several multi-level, full factorial RSM experiments. A Quality Factor (QF) was conceived as the response parameter for the experiments, representing the quality of the LIBS spectrum captured for a given hardware configuration. The QF enabled the hardware configuration to be adjusted so that a best compromise between resolution, signal intensity and signal noise could be achieved. The effect on the QF of simultaneously adjusting spectrometer gain, gate delay, gate width, lens position and spectrometer slit width was investigated, and the conditions yielding the best QF determined

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression

    Get PDF
    Motivation: The high dimensionality of genomic data calls for the development of specific classification methodologies, especially to prevent over-optimistic predictions. This challenge can be tackled by compression and variable selection, which combined constitute a powerful framework for classification, as well as data visualization and interpretation. However, current proposed combinations lead to instable and non convergent methods due to inappropriate computational frameworks. We hereby propose a stable and convergent approach for classification in high dimensional based on sparse Partial Least Squares (sparse PLS). Results: We start by proposing a new solution for the sparse PLS problem that is based on proximal operators for the case of univariate responses. Then we develop an adaptive version of the sparse PLS for classification, which combines iterative optimization of logistic regression and sparse PLS to ensure convergence and stability. Our results are confirmed on synthetic and experimental data. In particular we show how crucial convergence and stability can be when cross-validation is involved for calibration purposes. Using gene expression data we explore the prediction of breast cancer relapse. We also propose a multicategorial version of our method on the prediction of cell-types based on single-cell expression data. Availability: Our approach is implemented in the plsgenomics R-package.Comment: 9 pages, 3 figures, 4 tables + Supplementary Materials 8 pages, 3 figures, 10 table
    • 

    corecore