27,429 research outputs found

    Efficient Active Learning for Image Classification and Segmentation using a Sample Selection and Conditional Generative Adversarial Network

    Get PDF
    Training robust deep learning (DL) systems for medical image classification or segmentation is challenging due to limited images covering different disease types and severity. We propose an active learning (AL) framework to select most informative samples and add to the training data. We use conditional generative adversarial networks (cGANs) to generate realistic chest xray images with different disease characteristics by conditioning its generation on a real image sample. Informative samples to add to the training set are identified using a Bayesian neural network. Experiments show our proposed AL framework is able to achieve state of the art performance by using about 35% of the full dataset, thus saving significant time and effort over conventional methods

    Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding

    Get PDF
    Human action recognition refers to automatic recognizing human actions from a video clip. In reality, there often exist multiple human actions in a video stream. Such a video stream is often weakly-annotated with a set of relevant human action labels at a global level rather than assigning each label to a specific video episode corresponding to a single action, which leads to a multi-label learning problem. Furthermore, there are many meaningful human actions in reality but it would be extremely difficult to collect/annotate video clips regarding all of various human actions, which leads to a zero-shot learning scenario. To the best of our knowledge, there is no work that has addressed all the above issues together in human action recognition. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem and propose a framework to tackle this problem in a holistic way. Our framework holistically tackles the issue of unknown temporal boundaries between different actions for multi-label learning and exploits the side information regarding the semantic relationship between different human actions for knowledge transfer. Consequently, our framework leads to a joint latent ranking embedding for multi-label zero-shot human action recognition. A novel neural architecture of two component models and an alternate learning algorithm are proposed to carry out the joint latent ranking embedding learning. Thus, multi-label zero-shot recognition is done by measuring relatedness scores of action labels to a test video clip in the joint latent visual and semantic embedding spaces. We evaluate our framework with different settings, including a novel data split scheme designed especially for evaluating multi-label zero-shot learning, on two datasets: Breakfast and Charades. The experimental results demonstrate the effectiveness of our framework.Comment: 27 pages, 10 figures and 7 tables. Technical report submitted to a journal. More experimental results/references were added and typos were correcte

    Quantifying Facial Age by Posterior of Age Comparisons

    Full text link
    We introduce a novel approach for annotating large quantity of in-the-wild facial images with high-quality posterior age distribution as labels. Each posterior provides a probability distribution of estimated ages for a face. Our approach is motivated by observations that it is easier to distinguish who is the older of two people than to determine the person's actual age. Given a reference database with samples of known ages and a dataset to label, we can transfer reliable annotations from the former to the latter via human-in-the-loop comparisons. We show an effective way to transform such comparisons to posterior via fully-connected and SoftMax layers, so as to permit end-to-end training in a deep network. Thanks to the efficient and effective annotation approach, we collect a new large-scale facial age dataset, dubbed `MegaAge', which consists of 41,941 images. Data can be downloaded from our project page mmlab.ie.cuhk.edu.hk/projects/MegaAge and github.com/zyx2012/Age_estimation_BMVC2017. With the dataset, we train a network that jointly performs ordinal hyperplane classification and posterior distribution learning. Our approach achieves state-of-the-art results on popular benchmarks such as MORPH2, Adience, and the newly proposed MegaAge.Comment: To appear on BMVC 2017 (oral) revised versio

    Fast-AT: Fast Automatic Thumbnail Generation using Deep Neural Networks

    Full text link
    Fast-AT is an automatic thumbnail generation system based on deep neural networks. It is a fully-convolutional deep neural network, which learns specific filters for thumbnails of different sizes and aspect ratios. During inference, the appropriate filter is selected depending on the dimensions of the target thumbnail. Unlike most previous work, Fast-AT does not utilize saliency but addresses the problem directly. In addition, it eliminates the need to conduct region search on the saliency map. The model generalizes to thumbnails of different sizes including those with extreme aspect ratios and can generate thumbnails in real time. A data set of more than 70,000 thumbnail annotations was collected to train Fast-AT. We show competitive results in comparison to existing techniques
    corecore