222 research outputs found

    A comparative study of clusterhead selection algorithms in wireless sensor networks

    Full text link
    In Wireless Sensor Network, sensor nodes life time is the most critical parameter. Many researches on these lifetime extension are motivated by LEACH scheme, which by allowing rotation of cluster head role among the sensor nodes tries to distribute the energy consumption over all nodes in the network. Selection of clusterhead for such rotation greatly affects the energy efficiency of the network. Different communication protocols and algorithms are investigated to find ways to reduce power consumption. In this paper brief survey is taken from many proposals, which suggests different clusterhead selection strategies and a global view is presented. Comparison of their costs of clusterhead selection in different rounds, transmission method and other effects like cluster formation, distribution of clusterheads and creation of clusters shows a need of a combined strategy for better results.Comment: 12 pages, 3 figures, 5 tables, Int JournaL, International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 201

    Novel Bacteria Foraging Optimization for Energy-efficient Communication in Wireless Sensor Network

    Get PDF
    Optimization techniques based on Swarm-intelligence has been reported to have significant benefits towards addressing communication issues in Wireless Sensor Network (WSN). We reviewed the most dominant swarm intelligence technique called as Bacteria Foraging Optimization (BFO) to find that there are very less significant model towards addressing the problems in WSN. Therefore, the proposed paper introduced a novel BFO algorithm which maintains a very good balance between the computational and communication demands of a sensor node unlike the conventional BFO algorithms. The significant contribution of the proposed study is to minimize the iterative steps and inclusion of minimization of both receiving / transmittance power in entire data aggregation process. The study outcome when compared with standard energy-efficient algorithm was found to offer superior network lifetime in terms of higher residual energy as well as data transmission performance

    MeMLO: Mobility-Enabled Multi-Level Optimization Sensor Network

    Get PDF
    The paper presents a technique called as Mobility-enabled Multi Level Optimization (MeMLO) that addressing the existing problem of clustering in wireless sensor net-work (WSN). The technique enables selection of aggregator node based on multiple optimi-zation attribute which gives better decision capability to the clustering mechanism by choosing the best aggregator node. The outcome of the study shows MeMLO is highly capable of minimizing the halt time of mobile node that significantly lowers the transmit power of aggregator node. The simulation outcome shows negligible computational com-plexity, faster response time, and highly energy efficient for large scale WSN for longer simulation rounds as compared to conventional LEACH algorithm

    An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Get PDF
    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes

    Multi-stage secure clusterhead selection using discrete rule-set against unknown attacks in wireless sensor network

    Get PDF
    Security is the rising concern of the wireless network as there are various forms of reonfigurable network that is arised from it. Wireless sensor network (WSN) is one such example that is found to be an integral part of cyber-physical system in upcoming times. After reviewing the existing system, it can be seen that there are less dominant and robust solutions towards mitigating the threats of upcoming applications of WSN. Therefore, this paper introduces a simple and cost-effective modelling of a security system that offers security by ensuring secure selection of clusterhead during the data aggregation process in WSN. The proposed system also makes construct a rule-set in order to learn the nature of the communication iin order to have a discrete knowledge about the intensity of adversaries. With an aid of simulation-based approach over MEMSIC nodes, the proposed system was proven to offer reduced energy consumption with good data delivery performance in contrast to existing approach

    n-Tier Modelling of Robust Key management for Secure Data Aggregation in Wireless Sensor Network

    Get PDF
    Security problems in Wireless Sensor Network (WSN) have been researched from more than a decade. There are various security approaches being evolving towards resisting various forms of attack using different methodologies. After reviewing the existing security approaches, it can be concluded that such security approaches are highly attack-specific and doesnt address various associated issues in WSN. It is essential for security approach to be computationally lightweight. Therefore, this paper presents a novel analytical modelling that is based on n-tier approach with a target to generate an optimized secret key that could ensure higher degree of security during the process of data aggregation in WSN. The study outcome shows that proposed system is computationally lightweight with good performance on reduced delay and reduced energy consumption. It also exhibits enhanced response time and good data delivery performance to balance the need of security and data forwarding performance in WSN

    Novel Scheme for Minimal Iterative PSO Algorithm for Extending Network Lifetime of Wireless Sensor Network

    Get PDF
    Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated

    Improved Fair-Zone technique using Mobility Prediction in WSN

    Full text link
    The self-organizational ability of ad-hoc Wireless Sensor Networks (WSNs) has led them to be the most popular choice in ubiquitous computing. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. It has some limitation in energy and mobility of nodes. In this paper we propose a mobility prediction technique which tries overcoming above mentioned problems and improves the life time of the network. The technique used here is Exponential Moving Average for online updates of nodal contact probability in cluster based network.Comment: 10 pages, 7 figures, Published in International Journal Of Advanced Smart Sensor Network Systems (IJASSN
    corecore