219 research outputs found

    State space modeling of time-varying contemporaneous and lagged relations in connectivity maps

    Get PDF
    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample

    Neurophysiological mechanisms of sensorimotor recovery from stroke

    Get PDF
    Ischemic stroke often results in the devastating loss of nervous tissue in the cerebral cortex, leading to profound motor deficits when motor territory is lost, and ultimately resulting in a substantial reduction in quality of life for the stroke survivor. The International Classification of Functioning, Disability and Health (ICF) was developed in 2002 by the World Health Organization (WHO) and provides a framework for clinically defining impairment after stroke. While the reduction of burdens due to neurological disease is stated as a mission objective of the National Institute of Neurological Disorders and Stroke (NINDS), recent clinical trials have been unsuccessful in translating preclinical research breakthroughs into actionable therapeutic treatment strategies with meaningful progress towards this goal. This means that research expanding another NINDS mission is now more important than ever: improving fundamental knowledge about the brain and nervous system in order to illuminate the way forward. Past work in the monkey model of ischemic stroke has suggested there may be a relationship between motor improvements after injury and the ability of the animal to reintegrate sensory and motor information during behavior. This relationship may be subserved by sprouting cortical axonal processes that originate in the spared premotor cortex after motor cortical injury in squirrel monkeys. The axons were observed to grow for relatively long distances (millimeters), significantly changing direction so that it appears that they specifically navigate around the injury site and reorient toward the spared sensory cortex. Critically, it remains unknown whether such processes ever form functional synapses, and if they do, whether such synapses perform meaningful calculations or other functions during behavior. The intent of this dissertation was to study this phenomenon in both intact rats and rats with a focal ischemia in primary motor cortex (M1) contralateral to the preferred forelimb during a pellet retrieval task. As this proved to be a challenging and resource-intensive endeavor, a primary objective of the dissertation became to provide the tools to facilitate such a project to begin with. This includes the creation of software, hardware, and novel training and behavioral paradigms for the rat model. At the same time, analysis of previous experimental data suggested that plasticity in the neural activity of the bilateral motor cortices of rats performing pellet retrievals after focal M1 ischemia may exhibit its most salient changes with respect to functional changes in behavior via mechanisms that were different than initially hypothesized. Specifically, a major finding of this dissertation is the finding that evidence of plasticity in the unit activity of bilateral motor cortical areas of the reaching rat is much stronger at the level of population features. These features exhibit changes in dynamics that suggest a shift in network fixed points, which may relate to the stability of filtering performed during behavior. It is therefore predicted that in order to define recovery by comparison to restitution, a specific type of fixed point dynamics must be present in the cortical population state. A final suggestion is that the stability or presence of these dynamics is related to the reintegration of sensory information to the cortex, which may relate to the positive impact of physical therapy during rehabilitation in the postacute window. Although many more rats will be needed to state any of these findings as a definitive fact, this line of inquiry appears to be productive for identifying targets related to sensorimotor integration which may enhance the efficacy of future therapeutic strategies

    Estimation of single trial ERPs and EEG phase synchronization with application to mental fatigue

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others
    • ā€¦
    corecore