8,067 research outputs found

    Quantitative Evaluation of Base and Detail Decomposition Filters Based on their Artifacts

    Full text link
    This paper introduces a quantitative evaluation of filters that seek to separate an image into its large-scale variations, the base layer, and its fine-scale variations, the detail layer. Such methods have proliferated with the development of HDR imaging and the proposition of many new tone-mapping operators. We argue that an objective quality measurement for all methods can be based on their artifacts. To this aim, the four main recurrent artifacts are described and mathematically characterized. Among them two are classic, the luminance halo and the staircase effect, but we show the relevance of two more, the contrast halo and the compartmentalization effect. For each of these artifacts we design a test-pattern and its attached measurement formula. Then we fuse these measurements into a single quality mark, and obtain in that way a ranking method valid for all filters performing a base+detail decomposition. This synthetic ranking is applied to seven filters representative of the literature and shown to agree with expert artifact rejection criteria.Comment: 12 pages; 11 figures; 2 tables; supplementary material available (link given in the paper

    Contrast Optimization And Local Adaptation (COALA) for HDR Compression

    Full text link
    This paper develops a novel approach for high dynamic-range compression. It relies on the widely accepted assumption that the human visual system is not very sensitive to absolute luminance reaching the retina, but rather responds to relative luminance ratios. Dynamic-range compression is then formulated as a regularized optimization in which the image dynamic range is reduced while the local contrast of the original scene is preserved. Our method is shown to be capable of drastic dynamic-range compression, while preserving fine details and avoiding common artifacts such as halos, gradient reversals, or loss of local contrast

    High-Brightness Image Enhancement Algorithm

    Get PDF
    In this paper, we introduce a tone mapping algorithm for processing high-brightness video images. This method can maximally recover the information of high-brightness areas and preserve detailed information. Along with benchmark data, real-life and practical application data were taken to test the proposed method. The experimental objects were license plates. We reconstructed the image in the RGB channel, and gamma correction was carried out. After that, local linear adjustment was completed through a tone mapping window to restore the detailed information of the high-brightness region. The experimental results showed that our algorithm could clearly restore the details of high-brightness local areas. The processed image conformed to the visual effect observed by human eyes but with higher definition. Compared with other algorithms, the proposed algorithm has advantages in terms of both subjective and objective evaluation. It can fully satisfy the needs in various practical applications

    Advances on CMOS image sensors

    Get PDF
    This paper offers an introduction to the technological advances of image sensors designed using complementary metal–oxide–semiconductor (CMOS) processes along the last decades. We review some of those technological advances and examine potential disruptive growth directions for CMOS image sensors and proposed ways to achieve them. Those advances include breakthroughs on image quality such as resolution, capture speed, light sensitivity and color detection and advances on the computational imaging. The current trend is to push the innovation efforts even further as the market requires higher resolution, higher speed, lower power consumption and, mainly, lower cost sensors. Although CMOS image sensors are currently used in several different applications from consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allows the integration of several signal processing techniques and are driving the impressive advancement of the computational imaging. With this paper, we offer a very comprehensive review of methods, techniques, designs and fabrication of CMOS image sensors that have impacted or might will impact the images sensor applications and markets

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications

    Get PDF
    [EN] The ability of High Dynamic Range (HDR) imaging to capture the full range of lighting in a scene has meant that it is being increasingly used for Cultural Heritage (CH) applications. Photogrammetric techniques allow the semi-automatic production of 3D models from a sequence of images. Current photogrammetric methods are not always effective in reconstructing images under harsh lighting conditions, as significant geometric details may not have been captured accurately within under- and over-exposed regions of the image. HDR imaging offers the possibility to overcome this limitation, however the HDR images need to be tone mapped before they can be used within existing photogrammetric algorithms. In this paper we evaluate four different HDR tone-mapping operators (TMOs) that have been used to convert raw HDR images into a format suitable for state-of-the-art algorithms, and in particular keypoint detection techniques. The evaluation criteria used are the number of keypoints, the number of valid matches achieved and the repeatability rate. The comparison considers two local and two global TMOs. HDR data from four CH sites were used: Kaisariani Monastery (Greece), Asinou Church (Cyprus), Château des Baux (France) and Buonconsiglio Castle (Italy).We would like to thank Kurt Debattista, Timothy Bradley, Ratnajit Mukherjee, Diego Bellido Castañeda and TomBashford Rogers for their suggestions, help and encouragement. We would like to thank the hosting institutions: 3D Optical Metrology Group, FBK (Trento, Italy) and UMR 3495 MAP CNRS/MCC (Marseille, France), for their support during the data acquisition campaigns. This project has received funding from the European Union’s 7 th Framework Programme for research, technological development and demonstration under grant agreement No. 608013, titled “ITN-DCH: Initial Training Network for Digital Cultural Heritage: Projecting our Past to the Future”.Suma, R.; Stavropoulou, G.; Stathopoulou, EK.; Van Gool, L.; Georgopoulos, A.; Chalmers, A. (2016). Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications. Virtual Archaeology Review. 7(15):54-66. https://doi.org/10.4995/var.2016.6319SWORD546671

    Highlights Analysis System (HAnS) for low dynamic range to high dynamic range conversion of cinematic low dynamic range content

    Get PDF
    We propose a novel and efficient algorithm for detection of specular reflections and light sources (highlights) in cinematic content. The detection of highlights is important for reconstructing them properly in the conversion of the low dynamic range (LDR) to high dynamic range (HDR) content. Highlights are often difficult to be distinguished from bright diffuse surfaces, due to their brightness being reduced in the conventional LDR content production. Moreover, the cinematic LDR content is subject to the artistic use of effects that change the apparent brightness of certain image regions (e.g. limiting depth of field, grading, complex multi-lighting setup, etc.). To ensure the robustness of highlights detection to these effects, the proposed algorithm goes beyond considering only absolute brightness and considers five different features. These features are: the size of the highlight relative to the size of the surrounding image structures, the relative contrast in the surrounding of the highlight, its absolute brightness expressed through the luminance (luma feature), through the saturation in the color space (maxRGB feature) and through the saturation in white (minRGB feature). We evaluate the algorithm on two different image data-sets. The first one is a publicly available LDR image data-set without cinematic content, which allows comparison to the broader State of the art. Additionally, for the evaluation on cinematic content, we create an image data-set consisted of manually annotated cinematic frames and real-world images. For the purpose of demonstrating the proposed highlights detection algorithm in a complete LDR-to-HDR conversion pipeline, we additionally propose a simple inverse-tone-mapping algorithm. The experimental analysis shows that the proposed approach outperforms conventional highlights detection algorithms on both image data-sets, achieves high quality reconstruction of the HDR content and is suited for use in LDR-to-HDR conversion

    Gain compensation across LIDAR scans

    Get PDF
    High-end Terrestrial Lidar Scanners are often equipped with RGB cameras that are used to colorize the point samples. Some of these scanners produce panoramic HDR images by encompassing the information of multiple pictures with different exposures. Unfortunately, exported RGB color values are not in an absolute color space, and thus point samples with similar reflectivity values might exhibit strong color differences depending on the scan the sample comes from. These color differences produce severe visual artifacts if, as usual, multiple point clouds colorized independently are combined into a single point cloud. In this paper we propose an automatic algorithm to minimize color differences among a collection of registered scans. The basic idea is to find correspondences between pairs of scans, i.e. surface patches that have been captured by both scans. If the patches meet certain requirements, their colors should match in both scans. We build a graph from such pair-wise correspondences, and solve for the gain compensation factors that better uniformize color across scans. The resulting panoramas can be used to colorize the point clouds consistently. We discuss the characterization of good candidate matches, and how to find such correspondences directly on the panorama images instead of in 3D space. We have tested this approach to uniformize color across scans acquired with a Leica RTC360 scanner, with very good results.This work has been partially supported by the project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/5011000- 11033/FEDER ‘‘A way to make Europe’’, by the EU Horizon 2020, JPICH Conservation, Protection and Use initiative (JPICH-0127) and the Spanish Agencia Estatal de Invesigación (grant PCI2020- 111979), by the Universidad Rey Juan Carlos through the Distinguished Researcher position INVESDIST-04 under the call from 17/12/2020, and a Maria Zambrano research fellowship at Universitat Politècnica de Catalunya funded by Ministerio de Universidades.Peer ReviewedPostprint (published version

    A Survey of Congestion Control Techniques and Data Link Protocols in Satellite Networks

    Full text link
    Satellite communication systems are the means of realizing a global broadband integrated services digital network. Due to the statistical nature of the integrated services traffic, the resulting rate fluctuations and burstiness render congestion control a complicated, yet indispensable function. The long propagation delay of the earth-satellite link further imposes severe demands and constraints on the congestion control schemes, as well as the media access control techniques and retransmission protocols that can be employed in a satellite network. The problems in designing satellite network protocols, as well as some of the solutions proposed to tackle these problems, will be the primary focus of this survey

    Evaluation and Comparison of Edge-Preserving Filters

    Full text link
    Edge-preserving filters play an essential role in some of the most basic tasks of computational photography, such as abstraction, tonemapping, detail enhancement and texture removal, to name a few. The abundance and diversity of smoothing operators, accompanied by a lack of methodology to evaluate output quality and/or perform an unbiased comparison between them, could lead to misunderstanding and potential misuse of such methods. This paper introduces a systematic methodology for evaluating and comparing such operators and demonstrates it on a diverse set of published edge-preserving filters. Additionally, we present a common baseline along which a comparison of different operators can be achieved and use it to determine equivalent parameter mappings between methods. Finally, we suggest some guidelines for objective comparison and evaluation of edge-preserving filters
    corecore