21 research outputs found

    Employing VLC technology for transmitting data in biological tissue

    Get PDF
    Abstract. With the development in wireless communication methods, visible light communication (VLC), a subset of Optical Wireless Communication (OWC) has garnered much attention to employ the technology for a secure short-range wireless communication. We present a feasibility study to determine the performance of VLC in short range wireless transmission of data through biological tissue. VLC is a cost efficient and secure means of transmitting high volume of data wirelessly which can considerably reduce the interference issues caused by electromagnetic pulses and external electric fields. We present a simple measurement approach based on Monte Carlo simulation of photon propagation in tissue to estimate the strength of wireless communication with body implant devices. Using light for communication brings inherent security against unauthorized access of digital data which could be acquired from the low energy body implant devices used for medical diagnosis and other studies. This thesis discusses the typical components required to establish VLC such as, transmitter, receiver and the channel mediums. Furthermore, two cases of Monte Carlo simulation of photon-tissue interaction are studied to determine a possibility if VLC is a suitable substitute to radio frequency (RF) for a more wireless communication with the body implants. The process of theoretical measurement begins with conversion of light intensity into an electrical signal and an estimation of achievable data rate through a complex heterogeneous biological tissue model. The theoretically achieved data rates of the communication were found to be in the order of megabits per second (Mbps), ensuring a possibility to utilize this technology for short range reliable wireless communication with a wider range and application of implant medical devices. Biophotonics.fi presents a computational simulation of light propagation in different types of computational tissue models comprehensively validated by comparison with the team’s practical implementation of the same setup. This simulation is also used in this thesis (5.2.2) to approximate more accurate data rates of communication in case of a practical implementation

    Smart cmos image sensor for 3d measurement

    Get PDF
    3D measurements are concerned with extracting visual information from the geometry of visible surfaces and interpreting the 3D coordinate data thus obtained, to detect or track the position or reconstruct the profile of an object, often in real time. These systems necessitate image sensors with high accuracy of position estimation and high frame rate of data processing for handling large volumes of data. A standard imager cannot address the requirements of fast image acquisition and processing, which are the two figures of merit for 3D measurements. Hence, dedicated VLSI imager architectures are indispensable for designing these high performance sensors. CMOS imaging technology provides potential to integrate image processing algorithms on the focal plane of the device, resulting in smart image sensors, capable of achieving better processing features in handling massive image data. The objective of this thesis is to present a new architecture of smart CMOS image sensor for real time 3D measurement using the sheet-beam projection methods based on active triangulation. Proposing the vision sensor as an ensemble of linear sensor arrays, all working in parallel and processing the entire image in slices, the complexity of the image-processing task shifts from O (N 2 ) to O (N). Inherent also in the design is the high level of parallelism to achieve massive parallel processing at high frame rate, required in 3D computation problems. This work demonstrates a prototype of the smart linear sensor incorporating full testability features to test and debug both at device and system levels. The salient features of this work are the asynchronous position to pulse stream conversion, multiple images binarization, high parallelism and modular architecture resulting in frame rate and sub-pixel resolution suitable for real time 3D measurements

    Biologically-Inspired Low-Light Vision Systems for Micro-Air Vehicle Applications

    Get PDF
    Various insect species such as the Megalopta genalis are able to visually stabilize and navigate at light levels in which individual photo-receptors may receive fewer than ten photons per second. They do so in cluttered forest environments with astonishing success while relying heavily on optic flow estimation. Such capabilities are nowhere near being met with current technology, in large part due to limitations of low-light vision systems. This dissertation presents a body of work that enhances the capabilities of visual sensing in photon-limited environments with an emphasis on low-light optic flow detection. We discuss the design and characterization of two optical sensors fabricated using complementary metal-oxide-semiconductor (CMOS) very large scale integration (VLSI) technology. The first is a frame-based, low-light, photon-counting camera module with which we demonstrate 1-D non-directional optic flow detection with fewer than 100 photons/pixel/frame. The second utilizes adaptive analog circuits to improve room-temperature short-wave infrared sensing capabilities. This work demonstrates a reduction in dark current of nearly two orders of magnitude and an improvement in signal-to-noise ratio of nearly 40dB when compared to similar, non-adaptive circuits. This dissertation also presents a novel simulation-based framework that enables benchmarking of optic flow algorithms in photon-limited environments. Using this framework we compare the performance of traditional optic flow processing algorithms to biologically-inspired algorithms thought to be used by flying insects such as the Megalopta genalis. This work serves to provide an understanding of what may be ultimately possible with optic flow sensors in low-light environments and informs the design of future low-light optic flow hardware

    Investigation of radiation-hardened design of electronic systems with applications to post-accident monitoring for nuclear power plants

    Get PDF
    This research aims at improving the robustness of electronic systems used-in high level radiation environments by combining with radiation-hardened (rad-hardened) design and fault-tolerant techniques based on commercial off-the-shelf (COTS) components. A specific of the research is to use such systems for wireless post-accident monitoring in nuclear power plants (NPPs). More specifically, the following methods and systems are developed and investigated to accomplish expected research objectives: analysis of radiation responses, design of a radiation-tolerant system, implementation of a wireless post-accident monitoring system for NPPs, performance evaluation without repeat physical tests, and experimental validation in a radiation environment. A method is developed to analyze ionizing radiation responses of COTS-based devices and circuits in various radiation conditions, which can be applied to design circuits robust to ionizing radiation effects without repeated destructive tests in a physical radiation environment. Some mathematical models of semiconductor devices for post-irradiation conditions are investigated, and their radiation responses are analyzed using Technology Computer Aided Design (TCAD) simulator. Those models are then used in the analysis of circuits and systems under radiation condition. Based on the simulation results, method of rapid power off may be effectively to protect electronic systems under ionizing radiation. It can be a potential solution to mitigate damages of electronic components caused by radiation. With simulation studies of photocurrent responses of semiconductor devices, two methods are presented to mitigate the damages of total ionizing dose: component selection and radiation shielding protection. According to the investigation of radiation-tolerance of regular COTS components, most COTS-based semiconductor components may experience performance degradation and radiation damages when the total dose is greater than 20 K Rad (Si). A principle of component selection is given to obtain the suitable components, as well as a method is proposed to assess the component reliability under radiation environments, which uses radiation degradation factors, instead of the usual failure rate data in the reliability model. Radiation degradation factor is as the input to describe the radiation response of a component under a total radiation dose. In addition, a number of typical semiconductor components are also selected as the candidate components for the application of wireless monitoring in nuclear power plants. On the other hand, a multi-layer shielding protection is used to reduce the total dose to be less than 20 K Rad (Si) for a given radiation condition; the selected semiconductor devices can then survive in the radiation condition with the reduced total dose. The calculation method of required shielding thickness is also proposed to achieve the design objectives. Several shielding solutions are also developed and compared for applications in wireless monitoring system in nuclear power plants. A radiation-tolerant architecture is proposed to allow COTS-based electronic systems to be used in high-level radiation environments without using rad-hardened components. Regular COTS components are used with some fault-tolerant techniques to mitigate damages of the system through redundancy, online fault detection, real-time preventive remedial actions, and rapid power off. The functions of measurement, processing, communication, and fault-tolerance are integrated locally within all channels without additional detection units. A hardware emulation bench with redundant channels is constructed to verify the effectiveness of the developed radiation-tolerant architecture. Experimental results have shown that the developed architecture works effectively and redundant channels can switch smoothly in 500 milliseconds or less when a single fault or multiple faults occur. An online mechanism is also investigated to timely detect and diagnose radiation damages in the developed redundant architecture for its radiation tolerance enhancement. This is implemented by the built-in-test technique. A number of tests by using fault injection techniques have been carried out in the developed hardware emulation bench to validate the proposed detection mechanism. The test results have shown that faults and errors can be effectively detected and diagnosed. For the developed redundant wireless devices under given radiation dose (20 K Rad (Si)), the fault detection coverage is about 62.11%. This level of protection could be improved further by putting more resources (CPU consumption, etc.) into the function of fault detection, but the cost will increase. To apply the above investigated techniques and systems, under a severe accident condition in a nuclear power plant, a prototype of wireless post-accident monitoring system (WPAMS) is designed and constructed. Specifically, the radiation-tolerant wireless device is implemented with redundant and diversified channels. The developed system operates effectively to measure up-to-date information from a specific area/process and to transmit that information to remote monitoring station wirelessly. Hence, the correctness of the proposed architecture and approaches in this research has been successfully validated. In the design phase, an assessment method without performing repeated destructive physical tests is investigated to evaluate the radiation-tolerance of electronic systems by combining the evaluation of radiation protection and the analysis of the system reliability under the given radiation conditions. The results of the assessment studies have shown that, under given radiation conditions, the reliability of the developed radiation-tolerant wireless system can be much higher than those of non-redundant channels; and it can work in high-level radiation environments with total dose up to 1 M Rad (Si). Finally, a number of total dose tests are performed to investigate radiation effects induced by gamma radiation on distinct modern wireless monitoring devices. An experimental setup is developed to monitor the performance of signal measurement online and transmission of the developed distinct wireless electronic devices directly under gamma radiator at The Ohio State University Nuclear Reactor Lab (OSU-NRL). The gamma irradiator generates dose rates of 20 K Rad/h and 200 Rad/h on the samples, respectively. It was found that both measurement and transmission functions of distinct wireless measurement and transmission devices work well under gamma radiation conditions before the devices permanently damage. The experimental results have also shown that the developed radiation-tolerant design can be applied to effectively extend the lifespan of COTS-based electronic systems in the high-level radiation environment, as well as to improve the performance of wireless communication systems. According to testing results, the developed radiation-tolerant wireless device with a shielding protection can work at least 21 hours under the highest dose rate (20 K Rad/h). In summary, this research has addressed important issues on the design of radiation-tolerant systems without using rad-hardened electronic components. The proposed methods and systems provide an effective and economical solution to implement monitoring systems for obtaining up-to-date information in high-level radiation environments. The reported contributions are of significance both academically and in practice

    A vector light sensor for 3D proximity applications: Designs, materials, and applications

    Get PDF
    In this thesis, a three-dimensional design of a vector light sensor for angular proximity detection applications is realized. 3D printed mesa pyramid designs, along with commercial photodiodes, were used as a prototype for the experimental verification of single-pixel and two-pixel systems. The operation principles, microfabrication details, and experimental verification of micro-sized mesa and CMOS-compatible inverse vector light pixels in silicon are presented, where p-n junctions are created on pyramid’s facets as photodiodes. The one-pixel system allows for angular estimations, providing spatial proximity of incident light in 2D and 3D. A two-pixel system was further demonstrated to have a wider-angle detection. Multilayered carbon nanotubes, graphene, and vanadium oxide thin films as well as carbon nanoparticles-based composites were studied along with cost effective deposition processes to incorporate these films onto 3D mesa structures. Combining such design and materials optimizations produces sensors with a unique design, simple fabrication process, and readout integrated circuits’ compatibility. Finally, an approach to utilize such sensors in smart energy system applications as solar trackers, for automated power generation optimizations, is explored. However, integration optimizations in complementary-Si PV solar modules were first required. In this multi-step approach, custom composite materials are utilized to significantly enhance the reliability in bifacial silicon PV solar modules. Thermal measurements and process optimizations in the development of imec’s novel interconnection technology in solar applications are discussed. The interconnection technology is used to improve solar modules’ performance and enhance the connectivity between modules’ cells and components. This essential precursor allows for the effective powering and consistent operations of standalone module-associated components, such as the solar tracker and Internet of Things sensing devices, typically used in remote monitoring of modules’ performance or smart energy systems. Such integrations and optimizations in the interconnection technology improve solar modules’ performance and reliability, while further reducing materials and production costs. Such advantages further promote solar (Si) PV as a continuously evolving renewable energy source that is compatible with new waves of smart city technology and systems

    THE USE OF TUNED FRONT END OPTICAL RECEIVER AND PULSE POSITION MODULATION

    Get PDF
    The aim of this work is to investigate the use of tuned front-ends with OOK and PPM schemes, in addition to establish a theory for baseband tuned front end receivers. In this thesis, a background of baseband receivers, tuned receivers, and modulation schemes used in baseband optical communication is presented. Also, the noise theory of baseband receivers is reviewed which establishes a grounding for developing the theory relating to optical baseband tuned receivers. This work presents novel analytical expressions for tuned transimpedance, tuned components, noise integrals and equivalent input and output noise densities of two tuned front-end receivers employing bi-polar junction transistors and field effect transistors as the input. It also presents novel expressions for optimising the collector current for tuned receivers. The noise modelling developed in this work overcomes some limitations of the conventional noise modelling and allows tuned receivers to be optimised and analysed. This work also provides an in-depth investigation of optical baseband tuned receivers for on-off keying (OOK), Pulse position modulation (PPM), and Di-code pulse position modulation (Di-code PPM). This investigation aims to give quantitative predictions of the receiver performance for various types of receivers with different photodetectors (PIN photodetector and avalanche photodetector), different input transistors (bi-polar junction transistor BJT and field effect transistor FET), different pre-detection filters (1st order low pass filter and 3rd order Butterworth filter), different detection methods, and different tuned configurations (inductive shunt feedback front end tuned A and serial tuned front end tuned B). This investigation considers various optical links such as line of sight (LOS) optical link, non-line of sight (NLOS) link and optical fibre link. All simulations, modelling, and calculations (including: channel modelling, receiver modelling, noise modelling, pulse shape and inter-symbol interference simulations, and error probability and receiver calculations) are performed by using a computer program (PTC Mathcad prime 4, version: M010/2017) which is used to evaluate and analyse the performance of these optical links. As an outcome of this investigation, noise power in tuned receivers is significantly reduced for all examined configurations and under different conditions compared to non-tuned receivers. The overall receiver performance is improved by over 3dB in some cases. This investigation provides an overview and demonstration of cases where tuned receiver can be optimised for baseband transmission, offering a much better performance compared to non-tuned receivers. The performance improvement that tuned receivers offers can benefit a wide range of optical applications. This investigation also addresses some recommendations and suggestions for further work in some emerging applications such as underwater optical wireless communication (UOWC), visible light communication (VLC), and implantable medical devices (IMD). Keyword: Optical communications, Baseband receivers, Noise modelling, tuned front end, pulse position modulation (PPM)

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    corecore