16 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    A Review of Geophysical Modeling Based on Particle Swarm Optimization

    Get PDF
    This paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical felds are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth’s subsurface and then to undertake a critical evaluation of their benefts and limitations. Original works have been selected from the existing geophysical literature to illustrate successful PSO applied to the interpretation of electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, self-potential, direct current and seismic data. These case studies are critically described and compared. In addition, joint optimization of multiple geophysical data sets by means of multi-objective PSO is presented to highlight the advantage of using a single solver that deploys Pareto optimality to handle diferent data sets without conficting solutions. Finally, we propose best practices for the implementation of a customized algorithm from scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the beneft of PSO practitioners or inexperienced researchers

    Enhanced Particle Swarm Optimization Algorithms With Robust Learning Strategy For Global Optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a metaheuristic search (MS) algorithm inspired by the social interactions of bird flocking or fish schooling in searching for food sources. Pengoptimuman Kawanan Zarah (PSO) merupakan satu algoritma pencarian metaheuristik (MS) yang diinspirasi oleh interaksi sosial kumpulan burung atau kawanan ikan semasa pencarian sumber makanan

    An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties

    Get PDF
    The use of an electrical energy storage system (EESS) in a microgrid (MG) is widely recognized as a feasible method for mitigating the unpredictability and stochastic nature of sustainable distributed generators and other intermittent energy sources. The battery energy storage (BES) system is the most effective of the several power storage methods available today. The unit commitment (UC) determines the number of dedicated dispatchable distributed generators, respective power, the amount of energy transferred to and absorbed from the microgrid, as well as the power and influence of EESSs, among other factors. The BES deterioration is considered in the UC conceptualization, and an enhanced mixed particle swarm optimizer (EMPSO) is suggested to solve UC in MGs with EESS. Compared to the traditional PSO, the acceleration constants in EMPSO are exponentially adapted, and the inertial weight in EMPSO decreases linearly during each iteration. The proposed EMPSO is a mixed integer optimization algorithm that can handle continuous, binary, and integer variables. A part of the decision variables in EMPSO is transformed into a binary variable by introducing the quadratic transfer function (TF). This paper also considers the uncertainties in renewable power generation, load demand, and electricity market prices. In addition, a case study with a multiobjective optimization function with MG operating cost and BES deterioration defines the additional UC problem discussed in this paper. The transformation of a single-objective model into a multiobjective optimization model is carried out using the weighted sum approach, and the impacts of different weights on the operating cost and lifespan of the BES are also analyzed. The performance of the EMPSO with quadratic TF (EMPSO-Q) is compared with EMPSO with V-shaped TF (EMPSO-V), EMPSO with S-shaped TF (EMPSO-S), and PSO with S-shaped TF (PSO-S). The performance of EMPSO-Q is 15%, 35%, and 45% better than EMPSO-V, EMPSO-S, and PSO-S, respectively. In addition, when uncertainties are considered, the operating cost falls from 8729.87to8729.87 to 8986.98. Considering BES deterioration, the BES lifespan improves from 350 to 590, and the operating cost increases from 8729.87to8729.87 to 8917.7. Therefore, the obtained results prove that the EMPSO-Q algorithm could effectively and efficiently handle the UC problem

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Evolutionary Algorithms and Computational Methods for Derivatives Pricing

    Get PDF
    This work aims to provide novel computational solutions to the problem of derivative pricing. To achieve this, a novel hybrid evolutionary algorithm (EA) based on particle swarm optimisation (PSO) and differential evolution (DE) is introduced and applied, along with various other state-of-the-art variants of PSO and DE, to the problem of calibrating the Heston stochastic volatility model. It is found that state-of-the-art DEs provide excellent calibration performance, and that previous use of rudimentary DEs in the literature undervalued the use of these methods. The use of neural networks with EAs for approximating the solution to derivatives pricing models is next investigated. A set of neural networks are trained from Monte Carlo (MC) simulation data to approximate the closed form solution for European, Asian and American style options. The results are comparable to MC pricing, but with offline evaluation of the price using the neural networks being orders of magnitudes faster and computationally more efficient. Finally, the use of custom hardware for numerical pricing of derivatives is introduced. The solver presented here provides an energy efficient data-flow implementation for pricing derivatives, which has the potential to be incorporated into larger high-speed/low energy trading systems

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm
    corecore