2,679 research outputs found

    Fuel Cell Impedance Model Parameters Optimization using a Genetic Algorithm

    Get PDF
    The objective of this paper is the PEM fuel cell impedance model parameters identification. This work is a part of a larger work which is the diagnosis of the fuel cell which deals with the optimization and the parameters identification of the impedance complex model of the Nexa Ballard 1200 W PEM fuel cell. The method used for the identification is a sample genetic algorithm and the proposed impedance model is based on electric parameters, which will be found from a sweeping of well determined frequency bands. In fact, the frequency spectrum is divided into bands according to the behavior of the fuel cell. So, this work is considered a first in the field of impedance spectroscopy So, this work is considered a first in the field of impedance spectroscopy. Indeed, the identification using genetic algorithm requires experimental measures of the fuel cell impedance to optimize and identify the impedance model parameters values. This method is characterized by a good precision compared to the numeric methods. The obtained results prove the effectiveness of this approach

    A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Get PDF
    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15–30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced b attery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Smart Bioimpedance Spectroscopy Device for Body Composition Estimation

    Get PDF
    The purpose of this work is to describe a first approach to a smart bioimpedance spectroscopy device for its application to the estimation of body composition. The proposed device is capable of carrying out bioimpedance measurements in multiple configurable frequencies, processing the data to obtain the modulus and the bioimpedance phase in each of the frequencies, and transmitting the processed information wirelessly. Another novelty of this work is a new algorithm for the identification of Cole model parameters, which is the basis of body composition estimation through bioimpedance spectroscopy analysis. Against other proposals, the main advantages of the proposed method are its robustness against parasitic effects by employing an extended version of Cole model with phase delay and three dispersions, its simplicity and low computational load. The results obtained in a validation study with respiratory patients show the accuracy and feasibility of the proposed technology for bioimpedance measurements. The precision and validity of the algorithm was also proven in a validation study with peritoneal dialysis patients. The proposed method was the most accurate compared with other existing algorithms. Moreover, in those cases affected by parasitic effects the proposed algorithm provided better approximations to the bioimpedance values than a reference device.Ministerio de EconomĂ­a y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de AndalucĂ­a PIN-0394-2017UniĂłn Europea "FRAIL

    Impedimetric analysis of biological cell monolayers before and after exposure to nanosecond pulsed electric fields

    Get PDF
    Models and methods for the interpretation of impedance spectra for normal and cancer cells before and after electrical stimulation, focusing on nanosecond pulsed electric fields (nsPEFs), were investigated to describe salient features and their development that were observed in dedicated in situ experimental studies. For the first time a non-invasive, real-time and label-free method was established to explore temporal changes and their underlying physical processes of adherent cells for characteristics of cell-cell connections and the extracellular matrix.Modelle und Methoden zur Interpretation von Impedanzspektren für normale und Krebszellen vor und nach elektrischer Stimulation, mit dem Fokus auf Nanosekunden-gepulste elektrische Feldern, wurden untersucht, um herausragende Merkmale und deren Entwicklung zu beschreiben, die in speziellen In-situ-Experimenten beobachtet wurden. Zum ersten Mal wurde eine nicht-invasive, zeitnahe und markierungsfreie Methode entwickelt, um zeitliche Veränderungen und diesen zugrunde liegenden physikalischen Prozessen hinsichtlich der Eigenschaften von Zell-Zell-Verbindungen und der extrazellulären Matrix zu untersuchen

    Deterministic Artificial Intelligence

    Get PDF
    Kirchhoff’s laws give a mathematical description of electromechanics. Similarly, translational motion mechanics obey Newton’s laws, while rotational motion mechanics comply with Euler’s moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research culminating here with a text on the ability to make rigid bodies in rotation become self-aware, and even learn. This book is meant for basic scientifically inclined readers commencing with a first chapter on the basics of stochastic artificial intelligence to bridge readers to very advanced topics of deterministic artificial intelligence, espoused in the book with applications to both electromechanics (e.g. the forced van der Pol equation) and also motion mechanics (i.e. Euler’s moment equations). The reader will learn how to bestow self-awareness and express optimal learning methods for the self-aware object (e.g. robot) that require no tuning and no interaction with humans for autonomous operation. The topics learned from reading this text will prepare students and faculty to investigate interesting problems of mechanics. It is the fondest hope of the editor and authors that readers enjoy the book
    • …
    corecore