9 research outputs found

    Design and fabrication of force sensing robotic foot utilizing the volumetric displacement of a hyperelastic polymer

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 39-40).This thesis illustrates the fabrication and characterization of a footpad based on an original principle of volumetric displacement sensing. It is intended for use in detecting ground reaction forces in a running quadrupedal robot. The footpad is manufactured as a monolithic, composite structure composed of multi-graded polymers reinforced by glass fiber to increase durability and traction. The volumetric displacement sensing principle utilizes a hyperelastic gel-like pad with embedded magnets and Hall-effect sensors. Normal and shear forces can be detected as contact forces cause the gel-like pad to deform into rigid wells without the need to expose the sensor. A one-time training process using an artificial neural network was used to relate the normal and shear forces with the volumetric displacement sensor output. Two iterations on geometry are prototyped and tested. The first shows the ability to accurately predict normal forces in the Z-axis up to 80 N with a root mean squared error of 6% but little information about shear forces in the X an Y-axis. The second iteration demonstrates an ability to pick up the presence and direction of shear forces up to 40 N but with a root mean squared error of 70%. This project demonstrates a proof-of-concept for a more robust force sensor suitable for use in robotics that requires compliance while interacting with its environment.by Matthew A. Estrada.S.B

    Enabling Force Sensing During Ground Locomotion: A Bio-Inspired, Multi-Axis, Composite Force Sensor Using Discrete Pressure Mapping

    Get PDF
    This paper presents a new force sensor design approach that maps the local sampling of pressure inside a composite polymeric footpad to forces in three axes, designed for running robots. Conventional multiaxis force sensors made of heavy metallic materials tend to be too bulky and heavy to be fitted in the feet of legged robots, and vulnerable to inertial noise upon high acceleration. To satisfy the requirements for high speed running, which include mitigating high impact forces, protecting the sensors from ground collision, and enhancing traction, these stiff sensors should be paired with additional layers of durable, soft materials; but this also degrades the integrity of the foot structure. The proposed foot sensor is manufactured as a monolithic, composite structure composed of an array of barometric pressure sensors completely embedded in a protective polyurethane rubber layer. This composite architecture allows the layers to provide compliance and traction for foot collision while the deformation and the sampled pressure distribution of the structure can be mapped into three axis force measurement. Normal and shear forces can be measured upon contact with the ground, which causes the footpad to deform and change the readings of the individual pressure sensors in the array. A one-time training process using an artificial neural network is all that is necessary to relate the normal and shear forces with the multiaxis foot sensor output. The results show that the sensor can predict normal forces in the Z-axis up to 300 N with a root mean squared error of 0.66% and up to 80 N in the X- and Y-axis. The experiment results demonstrates a proof-of-concept for a lightweight, low cost, yet robust footpad sensor suitable for use in legged robots undergoing ground locomotion.United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) ProgramSingapore. Agency for Science, Technology and Researc

    FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

    Full text link
    In this paper we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330Hz, a footprint of 10 by 10mm and can easily be adapted in sensor range to the required load case. In three experiments we validate: first the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use

    Improved Normal and Shear Tactile Force Sensor Performance via Least Squares Artificial Neural Network (LSANN)

    Get PDF
    This paper presents a new approach to the characterization of tactile array sensors that aims to reduce the computational time needed for convergence to obtain a useful estimator for normal and shear forces. This is achieved by breaking up the sensor characterization into two parts: a linear regression portion using multivariate least squares regression, and a nonlinear regression portion using a neural network as a multi-input, multi-output function approximator. This procedure has been termed Least Squares Artificial Neural Network (LSANN). By applying LSANN on the 2nd generation MIT Cheetah footpad, the convergence speed for the estimator of the normal and shear forces is improved by 59.2% compared to using only the neural network alone. The normalized root mean squared error between the two methods are nearly identical at 1.17% in the normal direction, and 8.30% and 10.14% in the shear directions. This approach could have broader implications in greatly reducing the amount of time needed to train a contact force estimator for a large number of tactile sensor arrays (i.e. in robotic hands and skin).United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) programSingapore. Agency for Science, Technology and Researc

    Composite force sensing foot utilizing volumetric displacement of a hyperelastic polymer

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 65-67).In this thesis, I will describe the fabrication and characterization of a footpad based on an original principle of volumetric displacement sensing. It is intended for use in detecting ground contact forces in a running quadrupedal robot. The footpad is man- ufactured as a monolithic, composite structure composed of multi-graded polymers which are reinforced by glass fiber to increase durability and traction. The volumetric displacement sensing principle utilizes a hyperelastic gel-like pad with embedded magnets that are tracked with Hall-effect sensors. Normal and shear forces can be detected as contact with the ground which causes the gel-like pad to deform into rigid wells. This is all done without the need to expose the sensor. A one-time training process using an artificial neural network was used to relate the normal and shear forces with the volumetric displacement sensor output. The sensor was shown to pre- dict normal forces in the Z-axis up to 80N with a root mean squared error of 6.04% as well as the onset of shear in the X and Y-axis. This demonstrates a proof-of-concept for a more robust footpad sensor suitable for use in all outdoor conditions.by Meng Yee (Michael) Chuah.S.M

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective
    corecore