33 research outputs found

    Microstrip multi-stopband filter based on tree fractal slotted resonator

    Get PDF
    This paper presents the design and development of a new microstrip multi-stopband filter based on tree fractal slotted resonator. A single square patch with tree fractal slots of different iterations are employed for realizing dual stopband and tri-stopband filters. The tree fractal slotted resonators are generated from conventional square patch using an iterative tree fractal generator method. First, second and third level iterations of the tree fractal slot resonator are used to design dual and tri-stopband filters respectively. The first level iteration introduced for the tree fractal slot realizes dual bands at 2.64 GHz and 3.61 GHz while the second level iteration provides better stopband rejection and insertion loss at 2.57 GHz and 3.56 GHz. The tri-stopband filter generates three resonance frequencies at 1.53 GHz, 2.53 GHz and 3.54 GHz at third level iteration. By varying the slot length and width of the tree fractal slot, the resonant frequencies can be adjusted and stopbands of the proposed filter can be tuned for the desired unwanted frequency to be rejected. The proposed narrowband filters finds application in removing the interference of GPS and Wi-Max narrowband signals from the allotted bands of other wireless communication system

    COMPACT LEFT-HANDED DUAL-BAND FILTERS BASED ON SHUNDTED STUB RESONATORS

    Get PDF
    In this paper, super-compact microstrip dual-band resonator is presented, designed using the superposition of two simple left-handed (LH) resonators with single shunt stub. The proposed resonator exhibits spurious response in wide frequency range and therefore allows construction of dual-band filters using the superposition principle. The equivalent circuit model of the proposed resonator is crated and the influence of different geometrical parameters to the performances of the resonator are analyzed in details. As an examples, two dual-band filters that operate simultaneously at the WiMAX frequency bands are designed

    Miniaturized High-Q Tunable RF Filters

    Get PDF
    This dissertation focuses on the investigation and development of novel efficient tuning techniques and the design of miniaturized high-Q tunable RF filters for high-performance reconfigurable systems and applications. First, a detailed survey of the available tuning concepts and state-of-art tunable filters is provided. Then, a novel so-called inset resonator configuration is presented for the applications of fixed and tunable coaxial filters. The design procedure of frequency tunable filters with constant absolute bandwidth (CABW) is described, and various tunable inset filters are implemented, offering many desirable merits, including the wide tuning range and stable high-Q with minimum variation. For wide octave frequency tuning ranges with CABW, a second novel concept is presented using so-called re-entrant caps tuners. Beside simplicity and compactness, this technique also features enhanced spurious performance and wider tuning capabilities than the conventional means. Also, in this dissertation, various miniaturized reconfigurable dual-band/dual-mode bandpass filters and diplexers are presented using compact dual-mode high-Q TM-mode dielectric resonators. Furthermore, a novel microfluidic-based ultra-wide frequency tuning technique for TM010-mode dielectric resonators and filters is introduced in this dissertation. In addition to the very wide tuning window, this mechanism has key advantages of low-cost, simplicity, and intrinsic switch-off. Lastly, the dissertation includes a novel bandwidth reconfiguration concept with multi-octave tuning using a single element for coaxial bandpass filters. This mechanism brings many features including the fast tuning, constant high-Q, intrinsic switch-off, and wide BW-reconfiguration

    Reconfigurable Microstrip Bandpass Filters, Phase Shifters Using Piezoelectric Transducers, and Beam-scanning Leaky-wave Antennas

    Get PDF
    In modern wireless communication and radar systems, filters play an important role in getting a high-quality signal while rejecting spurious and neighboring unwanted signals. The filters with reconfigurable features, such as tunable bandwidths or switchable dual bands, also play a key part both in realizing the compact size of the system and in supporting multi-communication services. The Chapters II-IV of this dissertation show the studies of the filters for microwave communication. Bandpass filters realized in ring resonators with stepped impedance stubs are introduced. The effective locations of resonant frequencies and transmission zeros are analyzed, and harmonic suppression by interdigital-coupled feed lines is discussed. To vary mid-upper and mid-lower passband bandwidths separately, the characteristic impedances of the open-circuited stubs are changed. Simultaneous change of each width of the open-circuited stub results in variable passband bandwidths. Asymmetric stepped-impedance resonators are also used to develop independently controllable dual-band (2.4 and 5.2 GHz) bandpass filters. By extending feed lines, a transmission zero is created, which results in the suppression of the second resonance of 2.4-GHz resonators. To determine the precise transmission zeros, an external quality factor at feeders is fixed while extracting coupling coefficients between the resonators. Two kinds of feed lines, such as hook-type and spiral-type, are developed, and PIN diodes are controlled to achieve four states of switchable dual-band filters. Beam-scanning features of the antennas are very important in the radar systems. Phase shifters using piezoelectric transducers and dielectric leaky-wave antennas using metal strips are studied in the Chapters V-VII of this dissertation. Meandered microstrip lines are used to reduce the size of the phase shifters working up to 10 GHz, and reflection-type phase shifters using piezoelectric transducers are developed. A dielectric film with metal strips fed by an image line with a high dielectric constant is developed to obtain wide and symmetrical beam-steering angle. In short, many techniques are presented for realizing reconfigurable filters and large beam-scan features in this dissertation. The result of this work should have many applications in various wireless communication and radar systems
    corecore