3,714 research outputs found

    Compact Oblivious Routing in Weighted Graphs

    Get PDF

    Exact algorithms for the order picking problem

    Full text link
    Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixed-integer programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    Lower bounds for the mixed capacitated arc routing problem

    Get PDF
    Capacitated arc routing problems (CARP) arise in distribution or collecting problems where activities are performed by vehicles, with limited capacity, and are continuously distributed along some pre-defined links of a network. The CARP is defined either as an undirected problem or as a directed problem depending on whether the required links are undirected or directed. The mixed capacitated arc routing problem (MCARP) models a more realistic scenario since it considers directed as well as undirected required links in the associated network. We present a compact flow based model for the MCARP. Due to its large number of variables and constraints, we have created an aggregated version of the original model. Although this model is no longer valid, we show that it provides the same linear programming bound than the original model. Different sets of valid inequalities are also derived. The quality of the models is tested on benchmark instances with quite promising results..info:eu-repo/semantics/publishedVersio

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberán, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577
    corecore