10,938 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    A micropower centroiding vision processor

    Get PDF
    Published versio

    A versatile sensor interface for programmable vision systems-on-chip

    Get PDF
    This paper describes an optical sensor interface designed for a programmable mixed-signal vision chip. This chip has been designed and manufactured in a standard 0.35ÎŒm n-well CMOS technology with one poly layer and five metal layers. It contains a digital shell for control and data interchange, and a central array of 128 × 128 identical cells, each cell corresponding to a pixel. Die size is 11.885 × 12.230mm2 and cell size is 75.7ÎŒm × 73.3ÎŒm. Each cell contains 198 transistors dedicated to functions like processing, storage, and sensing. The system is oriented to real-time, single-chip image acquisition and processing. Since each pixel performs the basic functions of sensing, processing and storage, data transferences are fully parallel (image-wide). The programmability of the processing functions enables the realization of complex image processing functions based on the sequential application of simpler operations. This paper provides a general overview of the system architecture and functionality, with special emphasis on the optical interface.European Commission IST-1999-19007Office of Naval Research (USA) N00014021088

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    Image Processing: towards a System on Chip

    Get PDF

    A mixed-signal early vision chip with embedded image and programming memories and digital I/O

    Get PDF
    From a system level perspective, this paper presents a 128 × 128 flexible and reconfigurable Focal-Plane Analog Programmable Array Processor, which has been designed as a single chip in a 0.35ÎŒm standard digital 1P-5M CMOS technology. The core processing array has been designed to achieve high-speed of operation and large-enough accuracy (∌ 7bit) with low power consumption. The chip includes on-chip program memory to allow for the execution of complex, sequential and/or bifurcation flow image processing algorithms. It also includes the structures and circuits needed to guarantee its embedding into conventional digital hosting systems: external data interchange and control are completely digital. The chip contains close to four million transistors, 90% of them working in analog mode. The chip features up to 330GOPs (Giga Operations per second), and uses the power supply (180GOP/Joule) and the silicon area (3.8 GOPS/mm2) efficiently, as it is able to maintain VGA processing throughputs of 100Frames/s with about 15 basic image processing tasks on each frame
    • 

    corecore