8,625 research outputs found

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna

    Get PDF
    A new textile wearable wireless node, for operation in the 2.45 GHz industrial, scientific and medical (ISM) band, is proposed. It consists of a dual-polarised textile patch antenna with integrated microcontroller, sensor, memory and transceiver with receive diversity. Integrated into a garment, the flexible unit may serve for fall detection, as well as for patient or rescue-worker monitoring. Fragile and lossy interconnections are eliminated. They are replaced by very short radiofrequency signal paths in the antenna feed plane, reducing electromagnetic compatibility and signal integrity problems. The compact and flexible module combines sensing and wireless channel monitoring functionality with reliable and energy-efficient off-body wireless communication capability, by fully exploiting dual polarisation diversity. By integrating a battery, a fully autonomous and flexible system is obtained. This novel textile wireless node was validated, both in flat and bent state, in the anechoic chamber, assessing the characteristics of the integrated system in free-space conditions. Moreover, its performance was verified in various real-world conditions, integrated into a firefighter garment, and used as an autonomous body-centric measurement device

    MarinEye - A tool for marine monitoring

    Get PDF
    This work presents an autonomous system for marine integrated physical-chemical and biological monitoring – the MarinEye system. It comprises a set of sensors providing diverse and relevant information for oceanic environment characterization and marine biology studies. It is constituted by a physicalchemical water properties sensor suite, a water filtration and sampling system for DNA collection, a plankton imaging system and biomass assessment acoustic system. The MarinEye system has onboard computational and logging capabilities allowing it either for autonomous operation or for integration in other marine observing systems (such as Observatories or robotic vehicles. It was designed in order to collect integrated multi-trophic monitoring data. The validation in operational environment on 3 marine observatories: RAIA, BerlengasWatch and Cascais on the coast of Portugal is also discussed.info:eu-repo/semantics/publishedVersio

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis

    Get PDF
    In this work the development of an autonomous, robust and wearable micro-fluidic platform capable of performing on-line analysis of pH in sweat is discussed. Through the means of an optical detection system based on a surface mount light emitting diode (SMD LED) and a light photo sensor as a detector, a wearable system was achieved in which real-time monitoring of sweat pH was performed during 55 minutes of cycling activity. We have shown how through systems engineering, integrating miniaturised electrical components, and by improving the micro-fluidic chip characteristics, the wearability, reliability and performance of the micro-fluidic platform was significantly improved

    Miniature and Low-Power Wireless Sensor Node Platform: State of the Art and Current Trends

    Get PDF
    Wireless sensor node is an autonomous and compact device that has capability to monitor a variety of real-world phenomena. It is designed composed of sensing device, embedded processor, communication module, and power equipment. Wireless sensor node is part of wireless sensor network where hundred or thousand sensor node can be deployed. Over the past decade Wireless Sensor Networks (WSNs) have emerged as one of the computing platforms of note within the electronics community. In prediction, there will be more than 127 million wireless sensor nodes deployed worldwide by 2014. We have surveyed 100 currently available wireless sensor network node platforms have been developed and produced not only by the research institutions, the universities but also some companies in last ten years. In this paper, we present a review of 27 different wireless sensor node platforms. We review these devices under a number of different parameters, and we highlight the key advantages of each node platform according to dimension and power consumption. We also discuss the characteristics and trend of development and deployment a wireless sensor node technology

    BRIX - An Easy-to-Use Modular Sensor and Actuator Prototyping Toolkit

    Get PDF
    Zehe S, Großhauser T, Hermann T. BRIX - An Easy-to-Use Modular Sensor and Actuator Prototyping Toolkit. In: Tenth Annual IEEE International Conference on Pervasive Computing and Communications, Workshop Proceedings. Lugano, Swizerland: IEEE; 2012: 817-822.In this paper we present BRIX, a novel modular hardware prototyping platform for applications in mobile, wearable and stationary sensing, data streaming and feedback. The system consists of three different types of compact stack- able modules, which can adapt to various applications and scenarios. The core of BRIX is a base module that contains basic motion sensors, a processor and a wireless interface. A battery module provides power for the system and makes it a mobile device. Different types of extension modules can be stacked onto the base module to extend its scope of functions by sensors, actuators and interactive elements. BRIX allows a very intuitive, inexpensive and expeditious prototyping that does not require knowledge in electronics or hardware design. In an example application, we demonstrate how BRIX can be used to track human body movements
    corecore