821 research outputs found

    Genetic Algorithm Optimization of a High-Directivity Microstrip Patch Antenna Having a Rectangular Profile

    Get PDF
    A single high-directivity microstrip patch antenna (MPA) having a rectangular profile, which can substitute a linear array is proposed. It is designed by using genetic algorithms with the advantage of not requiring a feeding network. The patch fits inside an area of 2.54λ x 0.25λ, resulting in a broadside pattern with a directivity of 12 dBi and a fractional impedance bandwidth of 4%. The antenna is fabricated and the measurements are in good agreement with the simulated results. The genetic MPA provides a similar directivity as linear arrays using a corporate or series feeding, with the advantage that the genetic MPA results in more bandwidth

    Bandwidth Optimization of Microstrip Patch Antenna- A Basic Overview

    Get PDF
    An antenna is a very important device in wireless applications. It converts the electrical energy into RF signal at the transmitter and RF signal into electrical energy at the receiver side. A micro strip antenna consists of a rectangular patch on a ground plane separated by dielectric substrate. The patch in the antenna is made of a conducting material Cu (Copper) or Au (Gold) and this can be in any shape of rectangular, circular, triangular, elliptical or some other common shape. Researches of past few year shows that, various work on Microstrip Patch Antenna is attentive on designing compact sized Microstrip Antenna with efficiency and bandwidth optimized. But inherently Microstrip Patch Antenna have narrow bandwidth so to enhance bandwidth various techniques are engaged. Today’s Communication devices need several applications which require higher bandwidth; such as mobile phones these days are getting thinner and smarter but many applications supported by them require higher bandwidth, so microstrip antenna used for performing this operation should provide wider bandwidth as well as their shape should be more efficient and size should be compact so that it should occupy less space while keeping the size of device as small as possible. In this review paper, a review of different techniques used for bandwidth optimization & various shapes of compact and broadband microstrip patch antenna is given

    Numerical synthesis of filtering antennas

    Get PDF
    Dizertační práce je zaměřena na kompletní metodiku návrhu tří a čtyř prvkových flíčkových anténních řad, které neobsahují žádné filtrující části a přesto se chovají jako filtrující antény (filtény). Návrhová metodika kombinuje přístup pro návrh filtrů s přístupem pro anténní řady a zahrnuje tvarování frekvenčních odezev činitele odrazu a normovaného realizovaného zisku. Směr hlavního laloku přes pracovní pásmo je kontrolován také. S cílem kontrolovat tvary uvedených charakteristik, nové gi koeficienty jsou představeny pro návrh filtrujících anténních řad. Návrhová metodika byla ověřena na tří a čtyř prvkové filtrující anténní řadě přes frekvenční pásmo od 4,8 GHz do 6,8 GHz, pro šířku pásma celé struktury od 7 % do 14 % a pro požadovanou úroveň činitele odrazu od –10 dB do –20 dB. Celá metodika byla podpořena výrobou a měřením šesti testovacích vzorků filtrujících anténních řad s rozdílnými konfiguracemi. Ve všech případech se simulované a naměřené výsledky dobře shodují.The dissertation thesis is focused on a complete design methodology of a three and four-element patch antenna arrays which are without any filtering parts and yet behave like a filtering antenna (filtenna). This design combines filter and antenna approaches and includes shaping the frequency response of the reflection coefficient and the modelling of the frequency response of the normalized realized gain. The frequency response of the main lobe direction is controlled as well. In order to control the shape of these responses, a set of gi coefficients for designing the filtering antenna array are obtained. The design methodology was verified on the three-element and four-element filtennas over the frequency range from 4.8 GHz to 6.8 GHz; for fractional bandwidth from 7 % to 14 % and for level of the reflection coefficient from –10 dB to –20 dB. The whole design methodology was supported by manufacturing and measuring six test cases of the filtering antenna array with different configurations. Simulated and measured results show a good agreement in all cases.

    Extracting dualband antenna response from UWB based on current distribution analysis

    Get PDF
    An entirely new design approach has been employed to create the printed dualband monopole antenna that was the subject of this investigation. The printed monopole antenna construction is the primary component of the suggested design. CPW transmission lines with 50 Ohm impedance and a relative dielectric constant of 4.6 were used to power the antennas, which were housed in thin substrates with thicknesses of 1.6 millimeters (mm). In this study, the antennas discussed were modeled and analyzed by Computer Simulation Technique (CST) simulator. Using fractal structures on the radiating element of a dualband antenna can improve the resonance of the antenna as well as the coupling of the resonating bands that emerge from the resonance

    Compact Broadband Antenna with Vicsek Fractal Slots for WLAN and WiMAX Applications

    Get PDF
    This paper aims to design a compact broadband antenna for wireless local area network (WLAN) and worldwide interoperability for microwave access (WIMAX) applications. The suggested antenna consists of an octagonal radiator with Vicsek fractal slots and a partial ground plane, it is printed on FR-4 dielectric substrate, and its global dimension is 50 x 50 x 1.6 mm(3). The antenna is designed and constructed using both CST MICROWAVE STUDIO(R) and CADFEKO electromagnetic solver, and in order to validate the acquired simulation results, the antenna is manufactured and tested using vector network analyzer E5071C. The measurement results show that the designed antenna attains a broadband bandwidth (S-11 < -10 dB) from 2.48 to 6.7 GHz resonating at 3.6 and 5.3 GHz, respectively. The broadband bandwidth covers the two required bands: WiMAX at the frequencies 2.3/2.5/3.3/3.5/5/5.5 GHz and WLAN at the frequencies 3.6/2.4-2.5/4.9-5.9 GHz. In addition, the suggested antenna provides good gains of 2.78 dBi and 5.32 dBi, omnidirectional measured radiation patterns in the E-plane and the H-plane and high efficiencies of 88.5% and 84.6% at the resonant frequencies. A close agreement of about 90% between simulation and measurement results is noticed

    Design of Pentagonal Fractal Antenna for Ultra Wideband Applications

    Get PDF
    Ultra Wide band fractal antenna based on pentagonal geometry has been proposed in this thesis. Fractal shapes and their properties are discussed. The proposed antenna is microstrip line fed and its structure is based on fractal geometry where the resonance frequency of antenna is lowered by applying iteration techniques. Analysis of fractal antenna is done by using Software named CST Microwave Studio Suite 12. This antenna has low profile, is lightweight and easy to be fabricated and has successfully demonstrated multiband and broadband characteristics. The antenna size inclusive of the ground plane is compact with dimensions 7 X 7 cm2 and has wide operating bandwidths of 8 GHz. The antenna exhibits omnidirectional direction radiation coverage with a gain from 2 to 6.5 dBi in the entire operating band. Measured results show that this antenna operates from 4.7 to 12.7 GHz with a fractional bandwidth of above 90% and has relatively stable radiation patterns over its whole operation band

    Design and Analysis of Fractal Monopole Antennas for Multiband Wireless Applications

    Get PDF
    In this report three antenna designs using fractal geometry have been proposed. Fractal is a concept which is being employed in patch antenna to have better characteristics than conventional microstrip antenna. In the first design, a Sierpinski fractal antenna is proposed for multiband wireless applications. It consists of three-stage Sierpinski fractal geometry as the radiating element. The proposed antenna has compact dimension of 75×89.5×1.5 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The model is applied to predict the behavior of fractal antenna when the height of the antenna is changed. The proposed antenna is considered a good candidate for Multiband Wireless applications. In the second proposal, a Sierpinski Carpet fractal antenna is proposed for multiband wireless applications. It consists of two-stage Sierpinski Carpet fractal geometry as the radiating element. The proposed antenna has compact dimension of 59.06×47.16×1.6 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The major advantage of Sierpinski Carpet antenna is, it exhibits high self-similarity and symmetry. In the third proposal, multiband Koch curve antenna with fractal concept is presented. It consists of two-stage Koch curve as the radiating element. The proposed antenna is a compact dimension of 88×88×1.6 mm3. The multiband characteristic for a return loss less than 10dB is achieved. The proposed design is appropriate for mobile communication systems. CST Microwave Studio Suite 2012 is used to simulate these antennas. All the proposed antennas are fabricated on FR4 substrate of relative permittivity of 4.4 and height 1.6mm has been used

    Compact broadband antenna with Vicsek fractal slots for WLAN and WiMAX applications

    Get PDF
    This article belongs to the Special Issue Photonic Technologies and Systems Enabling 6G.This paper aims to design a compact broadband antenna for wireless local area network (WLAN) and worldwide interoperability for microwave access (WIMAX) applications. The suggested antenna consists of an octagonal radiator with Vicsek fractal slots and a partial ground plane, it is printed on FR-4 dielectric substrate, and its global dimension is 50 × 50 × 1.6 mm3. The antenna is designed and constructed using both CST MICROWAVE STUDIO® and CADFEKO electromagnetic solver, and in order to validate the acquired simulation results, the antenna is manufactured and tested using vector network analyzer E5071C. The measurement results show that the designed antenna attains a broadband bandwidth (S11 < −10 dB) from 2.48 to 6.7 GHz resonating at 3.6 and 5.3 GHz, respectively. The broadband bandwidth covers the two required bands: WiMAX at the frequencies 2.3/2.5/3.3/3.5/5/5.5 GHz and WLAN at the frequencies 3.6/2.4–2.5/4.9–5.9 GHz. In addition, the suggested antenna provides good gains of 2.78 dBi and 5.32 dBi, omnidirectional measured radiation patterns in the E-plane and the H-plane and high efficiencies of 88.5% and 84.6% at the resonant frequencies. A close agreement of about 90% between simulation and measurement results is noticed.The authors appreciate the funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant 801538. In addition the partial support from the Researchers Supporting Project number (RSP-2021/58), King Saud University, Riyadh, Saudi Arabia, is acknowledged

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems
    corecore