18 research outputs found

    Design And Implementation Of Co-Operative Control Strategy For Hybrid AC/DC Microgrids

    Get PDF
    This thesis is mainly divided in two major sections: 1) Modelling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation

    Implementation of SiC Power Electronics for Green Energy Based Electrification of Transportation

    Get PDF
    Increase in greenhouse gas emission poses a threat to the quality of air thus threatening the future of living beings on earth. A large part of the emission is produced by transport vehicles. Electric vehicles (EVs) are a great solution to this threat. They will completely replace the high usage of hydrocarbons in the transport sector. Energy efficiency and reduced local pollution can also be expected with full implementation of electrification of transportation. However, the current grid is not prepared to take the power load of EV charging if it were to happen readily. Moreover, critics are doubtful about the long-term sustainability of EVs in terms of different supply chain issues. The first step for tackling this problem from a research perspective was to do a thorough review of the details of charging in modern day grid. The downsides and lack of futuristic vision. Findings showed that implementing end to end DC based on green energy aided by SiC power electronics. To prove the findings analysis and modelling was done for SiC based charging network. A similar approach was implemented in EV powertrain development. The implementation of SiC power electronics in charging network showed lesser losses, higher thermal conductivity, lesser charging time. The effect on long term battery health and additional circuit was also observed. The cost of production can be reduced by volume manufacturing that has been discussed. In powertrain analysis and simulation the loss and heat reduction one shown on a component-by-component basis. Therefore, this research proposes a Silicon Carbide based end to end DC infrastructure based completely on solar and wind power. The pollution will further be reduced, and energy demands will be met

    Study of a Symmetrical LLC Dual-Active Bridge Resonant Converter Topology for Battery Storage Systems

    Get PDF
    A symmetrical LLC resonant converter topology with a fixed-frequency quasi-triple phase-shift modulation method is proposed for battery-powered electric traction systems with extensions to other battery storage systems. Operation of the converter with these methods yields two unique transfer characteristics and is dependent on the switching frequency. The converter exhibits several desirable features: 1) load-independent buck-boost voltage conversion when operated at the low-impedance resonant frequency, allowing for dc-link voltage regulation, zero-voltage switching across a wide load range, and intrinsic load transient resilience; 2) power flow control when operated outside the low-impedance resonance for integrated battery charging; 3) and simple operational mode selection based on needed functionality with only a single control variable per mode. Derivation of the transfer characteristics for three operation cases using exponential Fourier series coefficients is presented. Pre-design evaluation of the S-LLC converter is presented using these analytical methods and corroborated through simulation. Furthermore, the construction of a rapid-prototyping magnetics design tool developed for high-frequency transformer designs inclusive of leakage inductance, which is leveraged to create the magnetic elements needed for this work. Two 2kW prototypes of the proposed topology are constructed to validate the analysis, with one prototype having a transformer incorporating the series resonant inductance and secondary clamp inductance into the transformer leakage and magnetizing inductance, respectively. A test bench is presented to validate the analysis methods and proposed multi-operational control scheme. Theoretical and experimental results are compared, thus demonstrating the feasibility of the new multi-mode operation scheme of the S-LLC converter topology

    Modeling and Control of Power Electronics Interfaced Load for Transmission Power Network Analysis

    Get PDF
    The penetration level of power electronics (PE) interfaced loads has been gradually increasing in recent years. It is beneficial to equip the electric load with a PE interface since it allows for more advanced control of the load performance. Furthermore, the increasing penetration of PE interfaced loads will bring both challenges and opportunities to power network resilience and reliability. However, the lack of modeling and control design for PE interfaced load units in the transmission-level power network analysis, especially for these high-penetrated high-power-rating load applications, limits the accuracy of evaluating the dynamic performance and stability status of the power network. Additionally, the complex configuration and high bandwidth dynamic performance of the PE interfaced load computationally prohibit the model development in transient stability (TS) simulation programs. Therefore, the dynamic PE interfaced load model can be characterized considering the following aspects: 1) Utilize the real-time experimental platform to represent the PE load dynamic performance since the power testbed can reflect the power grid operation with more robustness. 2) Adapt the simplified PE-based model to TS simulation tools, which focus on grid electromechanical transients and oscillations between 0.1 and 3 Hz. Research of the PE interfaced load towards its modeling and control design in different simulation environments and the flexible contribution to the grid operation has been conducted. First, the variable speed drive (VSD) based motor load is studied as a typical PE interfaced load, which can actively interact with power grid operation. The model of VSD load is introduced and applied to the power emulator for the multi-converter-based hardware testbed (HTB) in the Center of Ultra-wide-area Resilient Electric Energy Transmission Network (CURENT). Second, the aggregated performance of multiple VSD load units with grid frequency support function is characterized. Third, the fast electric vehicle (EV) charging unit is studied as a typical PE interfaced load with high power consumption. The generic model of EV charger load is developed based on the detailed switching model. The accuracy of the proposed EV charger load TS model has been verified by comparing it to simulation results of the equivalent electromagnetic (EMT) model

    A novel power management and control design framework for resilient operation of microgrids

    Get PDF
    This thesis concerns the investigation of the integration of the microgrid, a form of future electric grids, with renewable energy sources, and electric vehicles. It presents an innovative modular tri-level hierarchical management and control design framework for the future grid as a radical departure from the ‘centralised’ paradigm in conventional systems, by capturing and exploiting the unique characteristics of a host of new actors in the energy arena - renewable energy sources, storage systems and electric vehicles. The formulation of the tri-level hierarchical management and control design framework involves a new perspective on the problem description of the power management of EVs within a microgrid, with the consideration of, among others, the bi-directional energy flow between storage and renewable sources. The chronological structure of the tri-level hierarchical management operation facilitates a modular power management and control framework from three levels: Microgrid Operator (MGO), Charging Station Operator (CSO), and Electric Vehicle Operator (EVO). At the top level is the MGO that handles long-term decisions of balancing the power flow between the Distributed Generators (DGs) and the electrical demand for a restructure realistic microgrid model. Optimal scheduling operation of the DGs and EVs is used within the MGO to minimise the total combined operating and emission costs of a hybrid microgrid including the unit commitment strategy. The results have convincingly revealed that discharging EVs could reduce the total cost of the microgrid operation. At the middle level is the CSO that manages medium-term decisions of centralising the operation of aggregated EVs connected to the bus-bar of the microgrid. An energy management concept of charging or discharging the power of EVs in different situations includes the impacts of frequency and voltage deviation on the system, which is developed upon the MGO model above. Comprehensive case studies show that the EVs can act as a regulator of the microgrid, and can control their participating role by discharging active or reactive power in mitigating frequency and/or voltage deviations. Finally, at the low level is the EVO that handles the short-term decisions of decentralising the functioning of an EV and essential power interfacing circuitry, as well as the generation of low-level switching functions. EVO level is a novel Power and Energy Management System (PEMS), which is further structured into three modular, hierarchical processes: Energy Management Shell (EMS), Power Management Shell (PMS), and Power Electronic Shell (PES). The shells operate chronologically with a different object and a different period term. Controlling the power electronics interfacing circuitry is an essential part of the integration of EVs into the microgrid within the EMS. A modified, multi-level, H-bridge cascade inverter without the use of a main (bulky) inductor is proposed to achieve good performance, high power density, and high efficiency. The proposed inverter can operate with multiple energy resources connected in series to create a synergized energy system. In addition, the integration of EVs into a simulated microgrid environment via a modified multi-level architecture with a novel method of Space Vector Modulation (SVM) by the PES is implemented and validated experimentally. The results from the SVM implementation demonstrate a viable alternative switching scheme for high-performance inverters in EV applications. The comprehensive simulation results from the MGO and CSO models, together with the experimental results at the EVO level, not only validate the distinctive functionality of each layer within a novel synergy to harness multiple energy resources, but also serve to provide compelling evidence for the potential of the proposed energy management and control framework in the design of future electric grids. The design framework provides an essential design to for grid modernisation

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Smart operation of transformers for sustainable electric vehicles integration and model predictive control for energy monitoring and management

    Get PDF
    The energy transmission and distribution systems existing today are stillsignificantly dependent on transformers,despite beingmore efficient and sustainable than those of decadesago. However, a large numberof power transformers alongwith other infrastructures have been in service for decades and are considered to be in their final ageing stage. Anymalfunction in the transformerscouldaffect the reliability of the entire electric network and alsohave greateconomic impact on the system.Concernsregardingurban air pollution, climate change, and the dependence on unstable and expensive supplies of fossil fuels have lead policy makers and researchers to explore alternatives to conventional fossil-fuelled internal combustion engine vehicles. One such alternative is the introduction of electric vehicles. A broad implementation of such mean of transportation could signify a drastic reduction in greenhouse gases emissions and could consequently form a compelling argument for the global efforts of meeting the emission reduction targets. In this thesis the topic of a high penetration of electric vehicles and their possible integration in insular networksis discussed. Subsequently, smart grid solutions with enabling technologies such as energy management systems and smart meters promote the vision of smart households, which also allows for active demand side in the residential sector.However, shifting loads simultaneously to lower price periods is likely to put extra stress on distribution system assets such as distribution transformers. Especially, additional new types of loads/appliances such as electric vehicles can introduce even more uncertaintyon the operation of these assets, which is an issue that needs special attention. Additionally, in order to improve the energy consumption efficiencyin a household, home energy management systems are alsoaddressed. A considerable number ofmethodologies developed are tested in severalcasestudies in order to answer the risen questions.Os sistemas de transmissão e distribuição de energia existentes hoje em dia sãosignificativamente dependentes dos transformadores, pese embora sejammais eficientes e sustentáveis do que os das décadas passadas. No entanto, uma grande parte dos transformadores ao nível dadistribuição, juntamente com outras infraestruturassubjacentes, estão em serviço há décadas e encontram-se nafasefinal do ciclo devida. Qualquer defeito no funcionamento dos transformadorespode afetara fiabilidadede toda a redeelétrica, para além de terum grande impactoeconómico no sistema.Os efeitos nefastos associadosàpoluição do arem centro urbanos, asmudançasclimáticasea dependência de fontes de energiafósseis têm levado os decisores políticos e os investigadores aexplorar alternativas para os veículos convencionais de combustão interna. Uma alternativa é a introdução de veículos elétricos. Umaampla implementação de tal meio de transporte poderia significar uma redução drástica dos gases de efeito de estufa e poderiareforçar os esforços globais para ocumprimento das metas de redução de emissõesde poluentes na atmosfera.Nesta tese é abordado o tema da elevada penetração dos veículos elétricose a sua eventual integração numarede elétricainsular. Posteriormente, são abordadas soluções de redeselétricasinteligentes com tecnologias específicas, tais como sistemas de gestão de energia e contadores inteligentes que promovamo paradigmadas casas inteligentes, que também permitem a gestão da procura ativano sector residencial.No entanto, deslastrando significativamente as cargaspara beneficiar de preçosmais reduzidosé suscetíveldecolocarconstrangimentosadicionaissobre os sistemas de distribuição, especialmentesobre ostransformadores.Osnovos tipos de cargas tais como os veículos elétricospodem introduzir ainda mais incertezassobre a operação desses ativos, sendo uma questão que suscitaespecial importância. Além disso, com ointuitode melhorar a eficiência do consumo de energia numa habitação, a gestão inteligente daenergia é um assunto que também éabordadonesta tese. Uma pletora de metodologias é desenvolvida e testadaemvários casos de estudos, a fim de responder às questões anteriormente levantadas

    FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Full text link

    Modelling and analysis of demand response implementation in the residential sector

    Get PDF
    Demand Response (DR) eliminates the need for expensive capital expenditure on the electricity distribution, transmission and the generation systems by encouraging consumers to alter their power usage through electricity pricing or incentive programs. However, modelling of DR programs for residential consumers is complicated due to the uncertain consumption behavious of consumers and the complexity of schedulling a large number of household appliances. This thesis has investigated the design and the implementation challenges of the two most commonly used DR components in the residential sector, i.e., time of use (TOU) and direct load control (DLC) programs for improving their effectiveness and implementation with innovative strategies to facilitate their acceptance by both consumers and utilities. In price-based DR programs, the TOU pricing scheme is one of the most attractive and simplest approaches for reducing peak electricity demand in the residential sector. This scheme has been adopted in many developed countries because it requires less communication infrastructure for its implementation. However, the implementation of TOU pricing in low and lower-middle income economies is less appealing, mainly due to a large number of low-income consumers, as traditional TOU pricing schemes may increase the cost of electricity for low income residential consumers and adversely affect their comfort levels. The research in this thesis proposes an alternative TOU pricing strategy for the residential sector in developing countries in order to manage peak demand problems while ensuring a low impact on consumers’ monthly energy bills and comfort levels. In this study, Bangladesh is used as an example of a lower-to-middle income developing country. The DLC program is becoming an increasingly attractive solution for utilities in developed countries due to advances in the construction of communication infrastructures as part of the smart grid concept deployment. One of the main challenges of the DLC program implementation is ensuring optimal control over a large number of different household appliances for managing both short and long intervals of voltage variation problems in distribution networks at both medium voltage (MV) and low voltage (LV) networks, while simultaneously enabling consumers to maintain their comfort levels. Another important challenge for DLC implementation is achieving a fair distribution of incentives among a large number of participating consumers. This thesis addresses these challenges by proposing a multi-layer load control algorithm which groups the household appliances based on the intervals of the voltage problems and coordinates with the reactive power from distributed generators (DGs) for the effective voltage management in MV networks. The proposed load controller takes into consideration the consumption preference of individual appliance, ensuring that the consumer’s comfort level is satisfied as well as fairly incentivising consumers based on their contributions in network voltage and power loss improvement. Another significant challenge with the existing DLC strategy as it applies to managing voltage in LV networks is that it does not take into account the network’s unbalance constraints in the load control algorithm. In LV distribution networks, voltage unbalance is prevalent and is one of the main power quality problems of concern. Unequal DR activation among the phases may cause excessive voltage unbalance in the network. In this thesis, a new load control algorithm is developed with the coordination of secondary on-load tap changer (OLTC) transformer for effective management of both voltage magnitude and unbalance in the LV networks. The proposed load control algorithm minimises the disturbance to consumers’ comfort levels by prioritising their consumption preferences. It motivates consumers to participate in DR program by providing flexibility to bid their participation prices dynamically in each DR event. The proposed DR programs are applicable for both developed and developing countries based on their available communication infrastructure for DR implementation. The main benefits of the proposed DR programs can be shared between consumers and their utilities. Consumers have flexibility in being able to prioritise their comfort levels and bid for their participation prices or receive fair incentives, while utilities effectively manage their network peak demand and power quality problems with minimum compensation costs. As a whole, consumers get the opportunity to minimise their electricity bills while utilities are able to defer or avoid the high cost of their investment in network reinforcements
    corecore