304 research outputs found

    Integrated high-voltage switched-capacitor DC-DC converters

    Get PDF
    The focus of this work is on the integrated circuit (IC) level integration of high-voltage switched-capacitor (SC) converters with the goal of fully integrated power management solutions for system-on-chip (SoC) and system-in-pagage (SiP) applications. The full integration of SC converters provides a low cost and compact power supply solution for modern electronics. Currently, there are almost no fully integrated SC converters with input voltages above 5 V. The purpose of this work is to provide solutions for higher input voltages. The increasing challenges of a compact and efficient power supply on the chip are addressed. High-voltage rated components and the increased losses caused by parasitics not only reduce power density but also efficiency. Loss mechanisms in high-voltage SC converters are investigated resulting in an optimized model for high-voltage SC converters. The model developed allows an appropriate comparison of different semiconductor technologies and converter topologies. Methods and design proposals for loss reduction are presented. Control of power switches with their supporting circuits is a further challenge for high-voltage SC converters. The aim of this work is to develop fully integrated SC converters with a wide input voltage range. Different topologies and concepts are investigated. The implemented fully integrated SC converter has an input voltage range of 2 V to 13 V. This is twice the range of existing converters. This is achieved by an implemented buck and boost mode as well as 17 conversion ratios. Experimental results show a peak efficiency of 81.5%. This is the highest published peak efficiency for fully integrated SC converters with an input voltage > 5V. With the help of the model developed in this work, a three-phase SC converter topology for input voltages up to 60 V is derived and then investigated and discussed. Another focus of this work is on the power supply of sensor nodes and smart home applications with low-power consumption. Highly integrated micro power supplies that operate directly from mains voltage are particularly suitable for these applications. The micro power supply proposed in this work utilizes the high-voltage SC converter developed. The output power is 14 times higher and the power density eleven times higher than prior work. Since plenty of power switches are built into modern multi-ratio SC converters, the switch control circuits must be optimized with regard to low-power consumption and area requirements. In this work, different level shifter concepts are investigated and a low-power high-voltage level shifter for 50 V applications based on a capacitive level shifter is introduced. The level shifter developed exceeds the state of the art by a factor of more than eleven with a power consumption of 2.1pJ per transition. A propagation delay of 1.45 ns is achieved. The presented high-voltage level shifter is the first level shifter for 50 V applications with a propagation delay below 2 ns and power consumption below 20pJ per transition. Compared to the state of the art, the figure of merit is significantly improved by a factor of two. Furthermore, various charge pump concepts are investigated and evaluated within the context of this work. The charge pump, optimized in this work, improves the state of the art by a factor of 1.6 in terms of efficiency. Bidirectional switches must be implemented at certain locations within the power stage to prevent reverse conduction. The topology of a bidirectional switch developed in this work reduces the dynamic switching losses by 70% and the area consumption including the required charge pumps by up to 65% compared to the state of the art. These improvements make it possible to control the power switches in a fast and efficient way. Index terms — integrated power management, high input voltage, multi-ratio SC converter, level shifter, bidirectional switch, micro power supplyDer Schwerpunkt dieser Arbeit liegt auf der Erforschung von Switched-Capacitor (SC) Spannungswandler für höhere Eingangsspannungen. Ziel der Arbeit ist es Lösungen für ein voll auf dem Halbleiterchip integriertes Power Management anzubieten um System on Chip (SoC) und System in Package (SiP) zu ermöglichen. Die vollständige Integration von SC Spannungswandlern bietet eine kostengünstige und kompakte Spannungsversorgungslösung für moderne Elektronik. Der kontinuierliche Trend hin zu immer kompakterer Elektronik und hin zu höheren Versorgungsspannungen wird in dieser Arbeit adressiert. Aktuell gibt es sehr wenige voll integrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Die mit steigender Spannung zunehmenden Herausforderungen an eine kompakte und effiziente Spannungsversorgung auf dem Chip werden in dieser Arbeit untersucht. Die höhere Spannungsfestigkeit der verwendeten Komponenten korreliert mit erhöhten Verlusten und erhöhtem Flächenverbrauch, welche sich negativ auf den Wirkungsgrad und die Leistungsdichte von SC Spannungswandlern auswirkt. Bestandteil dieser Arbeit ist die Untersuchung dieser Verlustmechanismen und die Entwicklung eines Modells, welches speziell für höhere Spannungen optimiert wurde. Das vorgestellte Modell ermöglicht zum einen die optimale Dimensionierung der Spannungswandler und zum anderen faire Vergleichsmöglichkeiten zwischen verschiedenen SC Spannungswandler Architekturen und Halbleitertechnologien. Demnach haben sowohl die gewählte Architektur und Halbleitertechnologie als auch die Kombination aus gewählter Architektur und Technologie erheblichen Einfluss auf die Leistungsfähigkeit der Spannungswandler. Ziel dieser Arbeit ist die Vollintegration eines SC Spannungswandlers mit einem weiten und hohen Eingangsspannungsbereich zu entwickeln. Dazu wurden verschiedene Schaltungsarchitekturen und Konzepte untersucht. Der vorgestellte vollintegrierte SC Spannungswandler weist einen Eingangsspannungsbereich von 2 V bis 13 V auf. Dies ist eine Verdopplung im Vergleich zum Stand der Technik. Dies wird durch einen implementierten Auf- und Abwärtswandler-Betriebsmodus sowie 17 Übersetzungsverhältnisse erreicht. Experimentelle Ergebnisse zeigen einen Spitzenwirkungsgrad von 81.5%. Dies ist der höchste veröffentlichte Spitzenwirkungsgrad für vollintegrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Mit Hilfe des in dieser Arbeit entwickelten Modells wird eine dreiphasige SC Spannungswandler Architektur für Eingangsspannungen bis zu 60 V entwickelt und anschließend analysiert und diskutiert. Ein weiterer Schwerpunkt dieser Arbeit adressiert die kompakte Spannungsversorgung von Sensorknoten mit geringem Stromverbrauch, für Anwendungen wie Smart Home und Internet der Dinge (IoT). Für diese Anwendungen eignen sich besonders gut hochintegrierte Mikro-Netzteile, welche direkt mit dem 230VRMS-Hausnetz (bzw. 110VRMS) betrieben werden können. Das in dieser Arbeit vorgestellte Mikro-Netzteil nutzt einen in dieser Arbeit entwickelten SC Spannungswandler für hohe Eingangsspannungen. Die damit erzielte Ausgangsleistung ist 14-mal größer im Vergleich zum Stand der Technik. In SC Spannungswandlern für hohe Spannungen werden viele Leistungsschalter benötigt, deshalb muss bei der Schalteransteuerung besonders auf einen geringen Leistungsverbrauch und Flächenbedarf der benötigten Schaltungsblöcke geachtet werden. Gegenstand dieser Arbeit ist sowohl die Analyse verschiedener Konzepte für Pegelumsetzer, als auch die Entwicklung eines stromsparenden Pegelumsetzers für 50 V-Anwendungen. Mit einer Leistungsaufnahme von 2.1pJ pro Signalübergang reduziert der entwickelte Pegelumsetzer mit kapazitiver Kopplung um mehr als elfmal die Leistungsaufnahme im Vergleich zum Stand der Technik. Die erreichte Laufzeitverzögerung beträgt 1.45 ns. Damit erzielt der vorgestellte Hochspannungs-Pegelumsetzer als erster Pegelumsetzer für 50 V-Anwendungen eine Laufzeitverzögerung unter 2 ns und eine Leistungsaufnahme unter 20pJ pro Signalwechsel. Im Vergleich zum Stand der Technik wird die Leistungskennzahl um den Faktor zwei deutlich verbessert. Darüber hinaus werden im Rahmen dieser Arbeiten verschiedene Ladungspumpenkonzepte untersucht und bewertet. Die in dieser Arbeit optimierte Ladungspumpe verbessert den Stand der Technik um den Faktor 1.6 in Bezug auf den Wirkungsgrad. Die in dieser Arbeit entwickelte Schaltungsarchitektur eines bidirektionalen Schalters reduziert die dynamischen Schaltverluste um 70% und den benötigten Flächenbedarf inklusive der benötigten Ladungspumpe um bis zu 65% gegenüber dem Stand der Technik. Diese Verbesserungen ermöglichen es, die Leistungsschalter schnell und effizient anzusteuern. Schlagworte — Integriertes Powermanagement, hohe Eingangsspannung, Multi-Ratio SC Spannungswan- dler, Pegelumsetzer, bidirektionaler Schalter, Mikro-Netztei

    Silicon-on-Insulator Power Management Integrated Circuit for Thin-Film Solid-State Lithium-Ion Micro-Batteries

    Get PDF
    This thesis presents the design and implementation of a power management integrated circuit (IC) that is capable of both current and voltage charging thin-film, solid-state, lithium-ion micro-batteries. The power management system has been fabricated using a single-poly, 0.35-ìm, partially-depleted, silicon-on-insulator process (PD-SOI). The system contains a temperature stable current charger (current generator and a 4-bit current-mode DAC), a regulated voltage supply (voltage amplifier), and a voltage monitoring circuit (2-bit flash ADC). Experimental results of the first version of the power management system show proper functionality was obtained. The current charger produced a 2% worst-case variation in output current over the temperature range 0–100°C. The regulated voltage output was measured to be 4.4 V and the digital outputs of the flash ADC transitioned at 3.45 and 4.76 V

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    MOSFET zero-temperature-coefficient (ZTC) effect modeling anda analysis for low thermal sensitivity analog applications

    Get PDF
    Continuing scaling of Complementary Metal-Oxide-Semiconductor (CMOS) technologies brings more integration and consequently temperature variation has become more aggressive into a single die. Besides, depending on the application, room ambient temperature may also vary. Therefore, procedures to decrease thermal dependencies of eletronic circuit performances become an important issue to include in both digital and analog Integrated Circuits (IC) design flow. The main purpose of this thesis is to present a design methodology for a typical CMOS Analog design flow to make circuits as insensitivity as possible to temperature variation. MOSFET Zero Temperature Coefficient (ZTC) and Transconductance Zero Temperature Coefficient (GZTC) bias points are modeled to support it. These are used as reference to deliver a set of equations that explains to analog designers how temperature will change transistor operation and hence the analog circuit behavior. The special bias conditions are analyzed using a MOSFET model that is continuous from weak to strong inversion, and both are proven to occur always from moderate to strong inversion operation in any CMOS fabrication process. Some circuits are designed using proposed methodology: two new ZTC-based current references, two new ZTC-based voltage references and four classical Gm-C circuits biased at GZTC bias point (or defined here as GZTC-C filters). The first current reference is a Self-biased CMOS Current Reference (ZSBCR), which generates a current reference of 5 A. It is designed in an 180 nm process, operating with a supply voltage from 1.4V to 1.8 V and occupying around 0:010mm2 of silicon area. From circuit simulations the reference shows an effective temperature coefficient (TCeff ) of 15 ppm/oC from 45 to +85oC, and a fabrication process sensitivity of = = 4:5%, including average process and local mismatch. Simulated power supply sensitivity is estimated around 1%/V. The second proposed current reference is a Resistorless Self-Biased ZTC Switched Capacitor Current Reference (ZSCCR). It is also designed in an 180 nm process, resulting a reference current of 5.88 A under a supply voltage of 1.8 V, and occupying a silicon area around 0:010mm2. Results from circuit simulation show an TCeff of 60 ppm/oC from -45 to +85 oC and a power consumption of 63 W. The first proposed voltage reference is an EMI Resisting MOSFET-Only Voltage Reference (EMIVR), which generates a voltage reference of 395 mV. The circuit is designed in a 130 nm process, occupying around 0.0075 mm2 of silicon area while consuming just 10.3 W. Post-layout simulations present a TCeff of 146 ppm/oC, for a temperature range from 55 to +125oC. An EMI source of 4 dBm (1 Vpp amplitude) injected into the power supply of circuit, according to Direct Power Injection (DPI) specification results in a maximum DC Shift and Peak-to-Peak ripple of -1.7 % and 35.8m Vpp, respectively. The second proposed voltage reference is a 0.5V Schottky-based Voltage Reference (SBVR). It provides three voltage reference outputs, each one utilizing different threshold voltage MOSFETs (standard-VT , low-VT , and zero-VT ), all available in adopted 130 nm CMOS process. This design results in three different and very low reference voltages: 312, 237, and 51 mV, presenting a TCeff of 214, 372, and 953 ppm/oC in a temperature range from -55 to 125oC, respectively. It occupies around 0.014 mm2 of silicon area for a total power consumption of 5.9 W. Lastly, a few example Gm-C circuits are designed using GZTC technique: a single-ended resistor emulator, an impedance inverter, a first order and a second order filter. These circuits are simulated in a 130 nm CMOS commercial process, resulting improved thermal stability in the main performance parameters, in the range from 27 to 53 ppm/°C.A contínua miniaturização das tecnologias CMOS oferece maior capacidade de integração e, consequentemente, as variações de temperatura dentro de uma pastilha de silício têm se apresentado cada vez mais agressivas. Ademais, dependendo da aplicação, a temperatura ambiente a qual o CHIP está inserido pode variar. Dessa maneira, procedimentos para diminuir o impacto dessas variações no desempenho do circuito são imprescindíveis. Tais métodos devem ser incluídos em ambos fluxos de projeto CMOS, analógico e digital, de maneira que o desempenho do sistema se mantenha estável quando a temperatura oscilar. A ideia principal desta dissertação é propor uma metodologia de projeto CMOS analógico que possibilite circuitos com baixa dependência térmica. Como base fundamental desta metodologia, o efeito de coeficiente térmico nulo no ponto de polarização da corrente de dreno (ZTC) e da transcondutância (GZTC) do MOSFET são analisados e modelados. Tal modelamento é responsável por entregar ao projetista analógico um conjunto de equações que esclarecem como a temperatura influencia o comportamento do transistor e, portanto, o comportamento do circuito. Essas condições especiais de polarização são analisadas usando um modelo de MOSFET que é contínuo da inversão fraca para forte. Além disso, é mostrado que as duas condições ocorrem em inversão moderada para forte em qualquer processo CMOS. Algumas aplicações são projetadas usando a metodologia proposta: duas referências de corrente baseadas em ZTC, duas referências de tensão baseadas em ZTC, e quatro circuitos gm-C polarizados em GZTC. A primeira referência de corrente é uma Corrente de Referência CMOS Auto-Polarizada (ZSBCR), que gera uma referência de 5uA. Projetada em CMOS 180 nm, a referência opera com uma tensão de alimentação de 1.4 à 1.8 V, ocupando uma área em torno de 0:010mm2. Segundo as simulações, o circuito apresenta um coeficiente de temperatura efetivo (TCeff ) de 15 ppm/oC para -45 à +85 oC e uma sensibilidade à variação de processo de = = 4:5% incluindo efeitos de variabilidade dos tipos processo e descasamento local. A sensibilidade de linha encontrada nas simulações é de 1%=V . A segunda referência de corrente proposta é uma Corrente de Referência Sem Resistor Auto-Polarizada com Capacitor Chaveado (ZSCCR). O circuito é projetado também em 180 nm, resultando em uma corrente de referência de 5.88 A, para uma tensão de alimentação de 1.8 V, e ocupando uma área de 0:010mm2. Resultados de simulações mostram um TCeff de 60 ppm/oC para um intervalo de temperatura de -45 à +85 oC e um consumo de potência de 63 W. A primeira referência de tensão proposta é uma Referência de Tensão resistente à pertubações eletromagnéticas contendo apenas MOSFETs (EMIVR), a qual gera um valor de referência de 395 mV. O circuito é projetado no processo CMOS 130 nm, ocupando em torno de 0.0075 mm2 de área de silício, e consumindo apenas 10.3 W. Simulações pós-leiaute apresentam um TCeff de 146 ppm/oC, para um intervalo de temperatura de 55 à +125oC. Uma fonte EMI de 4 dBm (1 Vpp de amplitude) aplicada na alimentação do circuito, de acordo com o padrão Direct Power Injection (DPI), resulta em um máximo de desvio DC e ondulação Pico-à-Pico de -1.7 % e 35.8m Vpp, respectivamente. A segunda referência de tensão é uma Tensão de Referência baseada em diodo Schottky com 0.5V de alimentação (SBVR). Ela gera três saídas, cada uma utilizando MOSFETs com diferentes tensões de limiar (standard-VT , low-VT , e zero-VT ). Todos disponíveis no processo adotado CMOS 130 nm. Este projeto resulta em três diferentes voltages de referências: 312, 237, e 51 mV, apresentando um TCeff de 214, 372, e 953 ppm/oC no intervalo de temperatura de -55 à 125oC, respectivamente. O circuito ocupa em torno de 0.014 mm2, consumindo um total de 5.9 W. Por último, circuitos gm-C são projetados usando o conceito GZTC: um emulador de resistor, um inversor de impedância, um filtro de primeira ordem e um filtro de segunda ordem. Os circuitos também são simulados no processo CMOS 130 nm, resultando em uma melhora na estabilidade térmica dos seus principais parâmetros, indo de 27 à 53 ppm/°C

    High Speed Fully Monolihic Self-Triggered Dc-Dc Buck Converter

    Get PDF
    The integration of DC-DC converter in standard CMOS process faces challenges from the low transistor breakdown voltages, poor quality factor and large size on-chip capacitors and inductors. The standard solution to deal with the problem of MOS transistor’s low breakdown voltage is using cascode configuration in the output stage. High-side PMOS and low-side NMOS power transistors in on-chip buck converter are switched ON and OFF with non-overlapping driving signals whose duty- cycle regulate the output voltage of converter. The non-overlapping driving signals are required to avoid short-circuit losses through power transistors. By using the cascode configuration, driving signals for high-side PMOS and low-side NMOS power switching transistors operate in different voltage domains. To overcome this problem, the voltage level shifters are needed to transfer driving signals between two voltage domains. However, associated power losses and additional timing delays in conventional level shifters may deteriorate the overall efficiency of converter. In order to avoid the losses and timing delays associated with the level shifters, a self-triggered buck converter is proposed in this work. The high-side driving signal is generated from the converter output via inductive feedback. The inductive feedback eliminates the required level shifters needed for transferring the driving signal to highside power transistor. The inductive feedback has fast response and provides adaptive dead-time that avoids short circuit losses with no additional hardware. Output voltage regulation is realized by controlling the duty-cycle of the signal switching the low-side NMOS transistor. Simulations are done on Cadence 45nm CMOS General Process Design Kit(GPDK) and show that the efficiency of self-triggered converter (64.25%) is better than the efficiency of a hard-switching buck converter(63.21%), even when the level shifter losses and delays are not taken into account. The converter generate output voltage ~1.5V ± 20mV and average load current 100mA ± 3mA from 3V-3.6V input at a switching frequency of 360MHz. In order to closely match real circuit behavior, layout is made and final simulations are carried out with extracted layout and PCB Parasitics. The converter is fully integrated with 1.73×1.62[mm×mm] area on silicon including power stage, transformer, decoupling capacitors and pad

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems
    corecore