44,307 research outputs found

    Identifying communities by influence dynamics in social networks

    Full text link
    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear community involvement that serve as a proxy between several communities and are equally as important. We run the algorithm for several real social networks which we believe represent a good fraction of the wide body of social networks and discuss the results including other possible applications.Comment: 10 pages, 6 figure

    Human-Centric Cyber Social Computing Model for Hot-Event Detection and Propagation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Microblogging networks have gained popularity in recent years as a platform enabling expressions of human emotions, through which users can conveniently produce contents on public events, breaking news, and/or products. Subsequently, microblogging networks generate massive amounts of data that carry opinions and mass sentiment on various topics. Herein, microblogging is regarded as a useful platform for detecting and propagating new hot events. It is also a useful channel for identifying high-quality posts, popular topics, key interests, and high-influence users. The existence of noisy data in the traditional social media data streams enforces to focus on human-centric computing. This paper proposes a human-centric social computing (HCSC) model for hot-event detection and propagation in microblogging networks. In the proposed HCSC model, all posts and users are preprocessed through hypertext induced topic search (HITS) for determining high-quality subsets of the users, topics, and posts. Then, a latent Dirichlet allocation (LDA)-based multiprototype user topic detection method is used for identifying users with high influence in the network. Furthermore, an influence maximization is used for final determination of influential users based on the user subsets. Finally, the users mined by influence maximization process are generated as the influential user sets for specific topics. Experimental results prove the superiority of our HCSC model against similar models of hot-event detection and information propagation

    Centrality Metric for Dynamic Networks

    Full text link
    Centrality is an important notion in network analysis and is used to measure the degree to which network structure contributes to the importance of a node in a network. While many different centrality measures exist, most of them apply to static networks. Most networks, on the other hand, are dynamic in nature, evolving over time through the addition or deletion of nodes and edges. A popular approach to analyzing such networks represents them by a static network that aggregates all edges observed over some time period. This approach, however, under or overestimates centrality of some nodes. We address this problem by introducing a novel centrality metric for dynamic network analysis. This metric exploits an intuition that in order for one node in a dynamic network to influence another over some period of time, there must exist a path that connects the source and destination nodes through intermediaries at different times. We demonstrate on an example network that the proposed metric leads to a very different ranking than analysis of an equivalent static network. We use dynamic centrality to study a dynamic citations network and contrast results to those reached by static network analysis.Comment: in KDD workshop on Mining and Learning in Graphs (MLG

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks
    • …
    corecore