54 research outputs found

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Flexible Receivers in CMOS for Wireless Communication

    Get PDF
    Consumers are pushing for higher data rates to support more services that are introduced in mobile applications. As an example, a few years ago video-on-demand was only accessed through landlines, but today wireless devices are frequently used to stream video. To support this, more flexible network solutions have merged in 4G, introducing new technical problems to the mobile terminal. New techniques are thus needed, and this dissertation explores five different ideas for receiver front-ends, that are cost-efficient and flexible both in performance and operating frequency. All ideas have been implemented in chips fabricated in 65 nm CMOS technology and verified by measurements. Paper I explores a voltage-mode receiver front-end where sub-threshold positive feedback transistors are introduced to increase the linearity in combination with a bootstrapped passive mixer. Paper II builds on the idea of 8-phase harmonic rejection, but simplifies it to a 6-phase solution that can reject noise and interferers at the 3rd order harmonic of the local oscillator frequency. This provides a good trade-off between the traditional quadrature mixer and the 8- phase harmonic rejection mixer. Furthermore, a very compact inductor-less low noise amplifier is introduced. Paper III investigates the use of global negative feedback in a receiver front-end, and also introduces an auxiliary path that can cancel noise from the main path. In paper IV, another global feedback based receiver front-end is designed, but with positive feedback instead of negative. By introducing global positive feedback, the resistance of the transistors in a passive mixer-first receiver front-end can be reduced to achieve a lower noise figure, while still maintaining input matching. Finally, paper V introduces a full receiver chain with a single-ended to differential LNA, current-mode downconversion mixers, and a baseband circuity that merges the functionalities of the transimpedance amplifier, channel-select filter, and analog-to-digital converter into one single power-efficient block

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Moore’s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Energy Efficient Wireless Circuits for IoT in CMOS Technology

    Get PDF
    The demand for efficient and reliable wireless communication equipment is increasing at a rapid pace. The demand and need vary between different technologies including 5G and IoT. The Radio Frequency Integrated Circuits (RFIC) designers face challenges to achieve higher performance with lower power resources. Although advances in Complementary Metal-Oxide-Semiconductor (CMOS) technology has help designers, challenges still exist. Thus, novel and new ideas are welcome in RFIC design. In this dissertation, many ideas are introduced to improve efficiency and linearity for wireless receivers dedicated to IoT applications. A low-power wireless RF receiver for wireless sensor networks (WSN) is introduced. The receiver has improved linearity with incorporated current-mode circuits and high-selectivity filtering. The receiver operates at a 900 MHz industrial, scientific and medical (ISM) band and is implemented in 130 nm CMOS technology. The receiver has a frequency multiplication mixer, which uses a 300 MHz clock from a local oscillator (LO). The local oscillator is implemented using vertical delay cells to reduce power consumption. The receiver conversion gain is 40 dB and the receiver noise figure (NF) is 14 dB. The receiver IIP3 is −6 dBm and the total power consumption is 1.16 mW. A wireless RF receiver system suitable for Internet-of-Things (IoT) applications is presented. The system can simultaneously harvest energy from out-of-band (OB) blockers with normal receiver operation; thus, the battery life for IoT applications can be extended. The system has only a single antenna for simultaneous RF energy harvesting and wireless reception. The receiver is a mixer-first quadrature receiver designed to tolerate large unavoidable blockers. The system is implemented in 180 nm CMOS technology and operates at 900 MHz industrial, scientific and medical (ISM) band. The receiver gain is 41.5 dB. Operating from a 1 V supply, the receiver core consumes 430 µW. This power can be reduced to 220 µW in the presence of a large blocker (≈ 0 dBm) by the power provided by the blocker RF energy harvesting where the power conversion efficiency (PCE) is 30%. Finally, a highly linear energy efficient wireless receiver is introduced. The receiver architecture is a mixer-first receiver with a Voltage Controlled Oscillator (VCO) based amplifier incorporated as baseband amplifier. The receiver benefits from the high linearity of this amplifier. Moreover, novel clock recycling techniques are applied to make use of the amplifier’s VCOs to clock the mixer circuit and to improve power consumption. The system is implemented in 130 nm CMOS technology and operates at 900 MHz ISM band. The receiver conversion gain is 42 dB and the power consumption is 2.9 mW. The out-of-band IIP3 is 6 dBm. All presented systems and circuits in this dissertation are validated and published in various IEEE journals and conferences

    대역 외 방해신호에 내성을 가지는 광대역 수신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2018. 2. 남상욱.In this thesis, a study of wideband receivers as one of the practical SDR receiver implementations is presented. The out-of-band interference signal (or blocker), which is the biggest problem of the wideband receiver is investigated, and have studied how to effectively remove it. As a result of reviewing previous studies, we have developed a wideband receiver based on the current-mode receiver structure and attempted to eliminate the blocker. The contents of the step-by-step research are as follows. First, attention was paid to the linearity of a low-noise transconductance amplifier (LNTA), which is the base block of current-mode receivers. In current-mode receivers, the LNTA should have a high transconductance (Gm) value to achieve a low noise figure, but a high Gm value results in low linearity. To solve this trade-off, we proposed a linearization method of transconductors. The proposed technique eliminates the third-order intermodulation distortion (IMD3) in a feed-forward manner using two paths. A transconductor having a transconductance of 2Gm is disposed in the main path, and an amplifier having a gain of ∛2 and a Gm-sized transconductor are located in the auxiliary path. This structure allows for some fundamental signal loss but cancel the IMD3 component at the output. As a result, the entire transconductor circuit can have high linearity due to the removed IMD3 component. We have designed a reconfigurable high-pass filter using a linearized transconductor and have demonstrated its performance. The fabricated circuit achieved a high input-referred third-order intercept point(IIP3) performance of 19.4 dBm. Then, a further improved linearized transconductor is designed. Since the linearized transconductors have a high noise figure due to the additional circuitry used for linearization, we have proposed a more suitable form for application to LNTA through noise figure analysis. The improved LNTA is designed to operate in low noise mode when there is no blocker, and can be switched to operate in high linearity mode when the blocker exists. We also applied noise cancelling techniques to the receiver to improve the noise figure performance of the wideband receiver circuit. A feedback path has been added to the current-mode receiver structure consisting of the LNTA, the mixer and the baseband transimpedance amplifier (TIA), and the noise signal can be detected using this path. This feedback path also maintains the input matching of the receiver to 50 Ω in a wide bandwidth. By adding an auxiliary path to the receiver, the in-band signal is amplified and the detected noise is removed from the baseband. The completed circuit exhibited wideband performance from 0.025 GHz to 2 GHz and IIP3 performance of -6.9 dBm in the high linearity mode. Finally, we designed a double noise-cancelling wideband receiver circuit by improving the performance of a wideband receiver with high immunity to blocker signals. In previous receivers, the LNTA was operated in two modes depending on the situation. In the improved receiver, the Gm ratio of the linearized LNTA was changed and the RF noise-cancelling technique was applied. The input matching and noise cancelling scheme introduced in the previous circuit was also applied and a wideband receiver circuit was designed to perform double noise-cancelling. As a result, the linearization and noise-cancellation of LNTA could be achieved at the same time, and the completed receiver circuit showed high IIP3 performance of 5 dBm with minimum noise figure of 1.4 dB. In conclusion, this thesis proposed a linearization technique for transconductor circuit and designed a wideband receiver based on current-mode receiver. The designed receiver circuit experimentally verified that it has low noise figure performance and high IIP3 performance and is tolerant to out-of-band blocker signals.Chapter 1. Introduction 1 1.1. Motivation of Wideband Receiver Architecture 2 1.2. Challenges in Designing Wideband Receiver 7 1.3. Prior Researches 13 1.3.1. N-Path Filter 14 1.3.2. Feed-Forward Blocker Filtering 16 1.3.3. Current-Mode Receiver 18 1.4. Research Objectives and Thesis Organization 22 Chapter 2. Transconductor Linearization Technique and Design of Tunable High-pass Filter 24 2.1. Transconductor Linearization Technique 27 2.2. Design of Tunable High-pass Filter 36 2.3. Measurement Results 41 2.4. Conclusions 46 Chapter 3. Wideband Noise-Cancelling Receiver Front-End Using Linearized Transconductor 47 3.1. Low-Noise Transconductance Amplifier Based on Linearized Transconductor 49 3.2. Wideband Noise-Cancelling Receiver Architecture 58 3.3. Measurement Results 64 3.4. Conclusions 70 Chapter 4. Blocker-Tolerant Wideband Double Noise-Cancelling Receiver Front-End 71 4.1. Linearized Noise-Cancelling Low-Noise Transconductance Amplifier 73 4.2. Wideband Double Noise-Cancelling Receiver Front-End 83 4.3. Measurement Results 90 4.4. Conclusions 97 Chapter 5. Conclusions 98 Bibliography 102 Abstract in Korean 112Docto

    Interference Suppression Techniques for RF Receivers

    Get PDF

    RF Amplification and Filtering Techniques for Cellular Receivers

    Get PDF
    The usage of various wireless standards, such as Bluetooth, Wi-Fi, GPS, and 4G/5G cellular, has been continually increasing. In order to utilize the frequency bands efficiently and to support new communication standards with lower power consumption, lower occupied volume and at reduced costs, multimode transceivers, software defined radios (SDRs), cognitive radios, etc., have been actively investigated. Broadband behavior of a wireless receiver is typically defined by its front-end low-noise amplifier (LNA), whose design must consider trade-offs between input matching, noise figure (NF), gain, bandwidth, linearity, and voltage headroom in a given process technology. Moreover, monolithic RF wireless receivers have been trending toward high intermediatefrequency (IF) or superhetrodyne radios thanks to recent breakthroughs in silicon integration of band-pass channel-select filters. The main motivation is to avoid the common issues in the currently predominant zero/low-IF receivers, such as poor 2nd-order nonlinearity, sensitivity to 1/f (i.e. flicker) noise and time-variant dc offsets, especially in the fine CMOS technology. To avoid interferers and blockers at the susceptible image frequencies that the high-IF entails, band-pass filters (BPF) with high quality (Q) factor components for sharp transfer-function transition characteristics are now required. In addition, integrated low-pass filters (LPF) with strong rejection of out-of-band frequency components are essential building blocks in a variety of applications, such as telecommunications, video signal processing, anti-aliasing filtering, etc. Attention is drawn toward structures featuring low noise, small area, high in-/out-of-band linearity performance, and low-power consumption. This thesis comprises three main parts. In the first part (Chapters 2 and 3), we focus on the design and implementation of several innovative wideband low-noise (transconductance) amplifiers [LN(T)A] for wireless cellular applications. In the first design, we introduce new approaches to reduce the noise figure of the noise-cancellation LNAs without sacrificing the power consumption budget, which leads to NF of 2 dB without adding extra power consumption. The proposed LNAs also have the capability to be used in current-mode receivers, especially in discrete-time receivers, as in the form of low noise transconductance amplifier (LNTA). In the second design, two different two-fold noise cancellation approaches are proposed, which not only improve the noise performance of the design, but also achieve high linearity (IIP3=+4.25 dBm). The proposed LN(T)As are implemented in TSMC 28-nm LP CMOS technology to prove that they are suitable for applications such as sub-6 GHz 5G receivers. The second objective of this dissertation research is to invent a novel method of band-pass filtering, which leads to achieving very sharp and selective band-pass filtering with high linearity and low input referred (IRN) noise (Chapter 4). This technique improves the noise and linearity performance without adding extra clock phases. Hence, the duty cycle of the clock phases stays constant, despite the sophisticated improvements. Moreover, due to its sharp filtering, it can filter out high blockers of near channels and can increase the receiver’s blocker tolerance. With the same total capacitor size and clock duty cycle as in a 1st-order complex charge-sharing band-pass filter (CS BPF), the proposed design achieves 20 dB better out-of-band filtering compared to the prior-art 1st-order CS BPF and 10 dB better out-of-band filtering compared to the conventional 2nd-order C-CS BPF. Finally, the stop-band rejection of the discrete-time infinite-impulse response (IIR) lowpass filter is improved by applying a novel technique to enhance the anti-aliasing filtering (Chapter 5). The aim is to introduce a 4th-order charge rotating (CR) discrete-time (DT) LPF, which achieves the record of stop-band rejection of 120 dB by using a novel pseudolinear interpolation technique while keeping the sampling frequency and the capacitor values constant

    Advances in Integrated Circuit Design and Implementation for New Generation of Wireless Transceivers

    Get PDF
    User’s everyday outgrowing demand for high-data and high performance mobile devices pushes industry and researchers into more sophisticated systems to fulfill those expectations. Besides new modulation techniques and new system designs, significant improvement is required in the transceiver building blocks to handle higher data rates with reasonable power efficiency. In this research the challenges and solution to improve the performance of wireless communication transceivers is addressed. The building block that determines the efficiency and battery life of the entire mobile handset is the power amplifier. Modulations with large peak to average power ratio severely degrade efficiency in the conventional fixed-biased power amplifiers (PAs). To address this challenge, a novel PA is proposed with an adaptive load for the PA to improve efficiency. A nonlinearity cancellation technique is also proposed to improve linearity of the PA to satisfy the EVM and ACLR specifications. Ultra wide-band (UWB) systems are attractive due to their ability for high data rate, and low power consumption. In spite of the limitation assigned by the FCC, the coexistence of UWB and NB systems are still an unsolved challenge. One of the systems that is majorly affected by the UWB signal, is the 802.11a system (5 GHz Wi-Fi). A new analog solution is proposed to minimize the interference level caused by the impulse Radio UWB transmitter to nearby narrowband receivers. An efficient 400 Mpulse/s IR-UWB transmitter is implemented that generates an analog UWB pulse with in-band notch that covers the majority of the UWB spectrum. The challenge in receiver (RX) design is the over increasing out of blockers in applications such as cognitive and software defined radios, which are required to tolerate stronger out-of-band (OB) blockers. A novel RX is proposed with a shunt N-path high-Q filter at the LNA input to attenuate OB-blockers. To further improve the linearity, a novel baseband blocker filtering techniques is proposed. A new TIA has been designed to maintain the good linearity performance for blockers at large frequency offsets. As a result, a +22 dBm IIP3 with 3.5 dB NF is achieved. Another challenge in the RX design is the tough NF and linearity requirements for high performance systems such as carrier aggregation. To improve the NF, an extra gain stage is added after the LNA. An N-path high-Q band-pass filter is employed at the LNA output together with baseband blocker filtering technique to attenuate out-of-band blockers and improve the linearity. A noise-cancellation technique based on the frequency translation has been employed to improve the NF. As a result, a 1.8dB NF with +5 dBm IIP3 is achieved. In addition, a new approach has been proposed to reject out of band blockers in carrier aggregation scenarios. The proposed solution also provides carrier to carrier isolation compared to typical solution for carrier aggregation
    corecore