1,385 research outputs found

    A common neural scale for the subjective pleasantness of different primary rewards.

    Get PDF
    When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making

    Overlapping neural systems represent cognitive effort and reward anticipation

    Get PDF
    Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance. Recently it has been proposed that an upcoming task requiring effort induces a similar anticipation mechanism as reward, relying on the same cortico-limbic network. However, this overlapping anticipatory activity for reward and effort has only been investigated in a perceptual task. Whether this generalizes to high-level cognitive tasks remains to be investigated. To this end, an fMRI experiment was designed to investigate anticipation of reward and effort in cognitive tasks. A mental arithmetic task was implemented, manipulating effort (difficulty), reward, and delay in reward delivery to control for temporal confounds. The goal was to test for the motivational effect induced by the expectation of bigger reward and higher effort. The results showed that the activation elicited by an upcoming difficult task overlapped with higher reward prospect in the ACC and in the striatum, thus highlighting a pivotal role of this circuit in sustaining motivated behavior

    Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies

    Get PDF
    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation likelihood estimation (ALE) meta-analysis of 87 studies (1452 subjects) comparing the brain responses to monetary, erotic and food reward outcomes. Those three rewards robustly engaged a common brain network including the ventromedial prefrontal cortex, ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some variations in the intensity and location of peak activity. Money-specific responses were further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea that abstract secondary rewards are represented in evolutionary more recent brain regions. In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. Together, these results indicate that the computation of experienced reward value does not only recruit a core "reward system" but also reward type-dependent brain structures

    Neuronal Distortions of Reward Probability without Choice

    Get PDF
    Reward probability crucially determines the value of outcomes. A basic phenomenon, defying explanation by traditional decision theories, is that people often overweigh small and underweigh large probabilities in choices under uncertainty. However, the neuronal basis of such reward probability distortions and their position in the decision process are largely unknown. We assessed individual probability distortions with behavioral pleasantness ratings and brain imaging in the absence of choice. Dorsolateral frontal cortex regions showed experience dependent overweighting of small, and underweighting of large, probabilities whereas ventral frontal regions showed the opposite pattern. These results demonstrate distorted neuronal coding of reward probabilities in the absence of choice, stress the importance of experience with probabilistic outcomes and contrast with linear probability coding in the striatum. Input of the distorted probability estimations to decision-making mechanisms are likely to contribute to well known inconsistencies in preferences formalized in theories of behavioral economics

    Hungry for compliments? Ghrelin is not associated with neural responses to social rewards or their pleasantness

    Get PDF
    The stomach-derived hormone ghrelin motivates food search and stimulates food consumption, with highest plasma concentrations before a meal and lowest shortly after. However, ghrelin also appears to affect the value of non-food rewards such as interaction with rat conspecifics, and monetary rewards in humans. The present pre-registered study investigated how nutritional state and ghrelin concentrations are related to the subjective and neural responses to social and non-social rewards. In a cross-over feed-and-fast design, 67 healthy volunteers (20 women) underwent functional magnetic resonance imaging (fMRI) in a hungry state and after a meal with repeated plasma ghrelin measurements. In task 1, participants received social rewards in the form of approving expert feedback, or non-social computer reward. In task 2, participants rated the pleasantness of compliments and neutral statements. Nutritional state and ghrelin concentrations did not affect the response to social reward in task 1. In contrast, ventromedial prefrontal cortical activation to non-social rewards was reduced when the meal strongly suppressed ghrelin. In task 2, fasting increased activation in the right ventral striatum during all statements, but ghrelin concentrations were neither associated with brain activation nor with experienced pleasantness. Complementary Bayesian analyses provided moderate evidence for a lack of correlation between ghrelin concentrations and behavioral and neural responses to social rewards, but moderate evidence for an association between ghrelin and non-social rewards. This suggests that ghrelin’s influence may be restricted to non-social rewards. Social rewards implemented via social recognition and affirmation may be too abstract and complex to be susceptible to ghrelin’s influence. In contrast, the non-social reward was associated with the expectation of a material object that was handed out after the experiment. This may indicate that ghrelin might be involved in anticipatory rather than consummatory phases of reward.publishedVersio

    Neurobiological foundations of aesthetics and art

    Get PDF
    A theory of the neurobiological foundations of aesthetics and art is described. This has its roots in emotion, in which what is pleasant or unpleasant, a reward or punisher, is the result of an evolutionary process in which genes define the (pleasant or unpleasant) goals for action. To this is added the operation of the reasoning, syntactic, brain system which evolved to help solve difficult, multistep, problems, and the use of which is encouraged by pleasant feelings when elegant, simple, and hence aesthetic solutions are found that are advantageous because they are parsimonious, and follow Occam's Razor. The combination of these two systems, and the interactions between them, provide an approach to understanding aesthetics that is rooted in evolution and its effects on brain design and function

    Measuring wanting and liking from animals to humans: A systematic review

    Get PDF
    Animal research has shown it is possible to want a reward that is not liked once obtained. Although these findings have elicited interest, human experiments have produced contradictory results, raising doubts about the existence of separate wanting and liking influences in human reward processing. This discrepancy could be due to inconsistences in the operationalization of these concepts. We systematically reviewed the methodologies used to assess human wanting and/or liking and found that most studies operationalized these concepts in congruency with the animal literature. Nonetheless, numerous studies operationalized wanting in similar ways to those that operationalized liking. These contradictions might be driven by a major source of confound: expected pleasantness. Expected pleasantness underlies cognitive desires and does not correspond to animal liking, a hedonic experience, or to animal wanting, which relies on affective relevance, consisting of the perception of a cue associated with a relevant reward for the organism’s current physiological state. Extending the concept of affective relevance and differentiating it from expected pleasantness might improve measures of human wanting and liking

    Neural basis of consumer decision making and neuroforecasting

    Get PDF
    • …
    corecore