2,653 research outputs found

    Downlink Precoding for Massive MIMO Systems Exploiting Virtual Channel Model Sparsity

    Full text link
    In this paper, the problem of designing a forward link linear precoder for Massive Multiple-Input Multiple-Output (MIMO) systems in conjunction with Quadrature Amplitude Modulation (QAM) is addressed. First, we employ a novel and efficient methodology that allows for a sparse representation of multiple users and groups in a fashion similar to Joint Spatial Division and Multiplexing. Then, the method is generalized to include Orthogonal Frequency Division Multiplexing (OFDM) for frequency selective channels, resulting in Combined Frequency and Spatial Division and Multiplexing, a configuration that offers high flexibility in Massive MIMO systems. A challenge in such system design is to consider finite alphabet inputs, especially with larger constellation sizes such as M≥16M\geq 16. The proposed methodology is next applied jointly with the complexity-reducing Per-Group Processing (PGP) technique, on a per user group basis, in conjunction with QAM modulation and in simulations, for constellation size up to M=64M=64. We show by numerical results that the precoders developed offer significantly better performance than the configuration with no precoder or the plain beamformer and with M≥16M\geq 16

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE
    • …
    corecore