493 research outputs found

    Hybrid SSA-TBATS to improve forecasting accuracy on export value data in Indonesia

    Get PDF
    This research aims to present the Hybrid SSA-TBATS approach as an alternate forecasting technique that does not need specific assumptions or requirements such as stationarity, linear or nonlinear process, and normality. This analysis used Indonesian exports (in millions of USD) from January 1993 to July 2022. The findings of this research reveal that the Hybrid SSA-TBATS method outperforms SSA and TBATS in forecasting accuracy and defines the window length and number of groups. Therefore, it is highly recommended based on MAPE since it does not need any information on the characteristics of the data to be forecasted

    Methods and Tools for the Microsimulation and Forecasting of Household Expenditure

    Get PDF
    This paper reviews potential methods and tools for the microsimulation and forecasting of household expenditure. It begins with a discussion of a range of approaches to the forecasting of household populations via agent-based modelling tools. Then it evaluates approaches to the modelling of household expenditure. A prototype implementation is described and the paper concludes with an outline of an approach to be pursued in future work

    Methods and Tools for the Microsimulation and Forecasting of Household Expenditure - A Review

    Get PDF
    This paper reviews potential methods and tools for the microsimulation and forecasting of household expenditure. It begins with a discussion of a range of approaches to the forecasting of household populations via agent-based modelling tools. Then it evaluates approaches to the modelling of household expenditure. A prototype implementation is described and the paper concludes with an outline of an approach to be pursued in future work

    Data Science for Finance: Targeted Learning from (Big) Data to Economic Stability and Financial Risk Management

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Statistics and EconometricsThe modelling, measurement, and management of systemic financial stability remains a critical issue in most countries. Policymakers, regulators, and managers depend on complex models for financial stability and risk management. The models are compelled to be robust, realistic, and consistent with all relevant available data. This requires great data disclosure, which is deemed to have the highest quality standards. However, stressed situations, financial crises, and pandemics are the source of many new risks with new requirements such as new data sources and different models. This dissertation aims to show the data quality challenges of high-risk situations such as pandemics or economic crisis and it try to theorize the new machine learning models for predictive and longitudes time series models. In the first study (Chapter Two) we analyzed and compared the quality of official datasets available for COVID-19 as a best practice for a recent high-risk situation with dramatic effects on financial stability. We used comparative statistical analysis to evaluate the accuracy of data collection by a national (Chinese Center for Disease Control and Prevention) and two international (World Health Organization; European Centre for Disease Prevention and Control) organizations based on the value of systematic measurement errors. We combined excel files, text mining techniques, and manual data entries to extract the COVID-19 data from official reports and to generate an accurate profile for comparisons. The findings show noticeable and increasing measurement errors in the three datasets as the pandemic outbreak expanded and more countries contributed data for the official repositories, raising data comparability concerns and pointing to the need for better coordination and harmonized statistical methods. The study offers a COVID-19 combined dataset and dashboard with minimum systematic measurement errors and valuable insights into the potential problems in using databanks without carefully examining the metadata and additional documentation that describe the overall context of data. In the second study (Chapter Three) we discussed credit risk as the most significant source of risk in banking as one of the most important sectors of financial institutions. We proposed a new machine learning approach for online credit scoring which is enough conservative and robust for unstable and high-risk situations. This Chapter is aimed at the case of credit scoring in risk management and presents a novel method to be used for the default prediction of high-risk branches or customers. This study uses the Kruskal-Wallis non-parametric statistic to form a conservative credit-scoring model and to study its impact on modeling performance on the benefit of the credit provider. The findings show that the new credit scoring methodology represents a reasonable coefficient of determination and a very low false-negative rate. It is computationally less expensive with high accuracy with around 18% improvement in Recall/Sensitivity. Because of the recent perspective of continued credit/behavior scoring, our study suggests using this credit score for non-traditional data sources for online loan providers to allow them to study and reveal changes in client behavior over time and choose the reliable unbanked customers, based on their application data. This is the first study that develops an online non-parametric credit scoring system, which can reselect effective features automatically for continued credit evaluation and weigh them out by their level of contribution with a good diagnostic ability. In the third study (Chapter Four) we focus on the financial stability challenges faced by insurance companies and pension schemes when managing systematic (undiversifiable) mortality and longevity risk. For this purpose, we first developed a new ensemble learning strategy for panel time-series forecasting and studied its applications to tracking respiratory disease excess mortality during the COVID-19 pandemic. The layered learning approach is a solution related to ensemble learning to address a given predictive task by different predictive models when direct mapping from inputs to outputs is not accurate. We adopt a layered learning approach to an ensemble learning strategy to solve the predictive tasks with improved predictive performance and take advantage of multiple learning processes into an ensemble model. In this proposed strategy, the appropriate holdout for each model is specified individually. Additionally, the models in the ensemble are selected by a proposed selection approach to be combined dynamically based on their predictive performance. It provides a high-performance ensemble model to automatically cope with the different kinds of time series for each panel member. For the experimental section, we studied more than twelve thousand observations in a portfolio of 61-time series (countries) of reported respiratory disease deaths with monthly sampling frequency to show the amount of improvement in predictive performance. We then compare each country’s forecasts of respiratory disease deaths generated by our model with the corresponding COVID-19 deaths in 2020. The results of this large set of experiments show that the accuracy of the ensemble model is improved noticeably by using different holdouts for different contributed time series methods based on the proposed model selection method. These improved time series models provide us proper forecasting of respiratory disease deaths for each country, exhibiting high correlation (0.94) with Covid-19 deaths in 2020. In the fourth study (Chapter Five) we used the new ensemble learning approach for time series modeling, discussed in the previous Chapter, accompany by K-means clustering for forecasting life tables in COVID-19 times. Stochastic mortality modeling plays a critical role in public pension design, population and public health projections, and in the design, pricing, and risk management of life insurance contracts and longevity-linked securities. There is no general method to forecast the mortality rate applicable to all situations especially for unusual years such as the COVID-19 pandemic. In this Chapter, we investigate the feasibility of using an ensemble of traditional and machine learning time series methods to empower forecasts of age-specific mortality rates for groups of countries that share common longevity trends. We use Generalized Age-Period-Cohort stochastic mortality models to capture age and period effects, apply K-means clustering to time series to group countries following common longevity trends, and use ensemble learning to forecast life expectancy and annuity prices by age and sex. To calibrate models, we use data for 14 European countries from 1960 to 2018. The results show that the ensemble method presents the best robust results overall with minimum RMSE in the presence of structural changes in the shape of time series at the time of COVID-19. In this dissertation’s conclusions (Chapter Six), we provide more detailed insights about the overall contributions of this dissertation on the financial stability and risk management by data science, opportunities, limitations, and avenues for future research about the application of data science in finance and economy

    ANN application in maritime industry : Baltic Dry Index forecasting & optimization of the number of container cranes

    Get PDF
    This dissertation is a study of dry bulk freight index forecasting and port planning, both based on Artificial Neural network application. First the dry bulk market is reviewed, and the reason for the high fluctuation of freight rates through the demand-supply mechanism is examined. Due to the volatile BDI, the traditional linear regression forecasting method cannot guarantee the performance of forecasting, but ANN overcomes this difficulty and gives better performance especially in a short time. Besides, in order to improve the performance of ANN further, wavelet is introduced to pre-process the BDI data. But when the noise (high frequency parts) is stripped, the hidden useful data may also be eliminated. So the performance of different degrees of de-noising models is evaluated, and the best one (most suitable de-noising model) is chosen to forecast BDI, which avoids over de-noising and keeps a fair ability of forecasting. In the second case study, the collected container terminals and ranked, and the throughput of each combination (different crane number) is estimated by applying a trained BP network. The BP network with DEA output is combined, simulating the efficiency of each combination. And finally, the optimal container crane number is fixed due to the highest efficiency and practical reasons. The Conclusion and Recommendation chapter gives some further advice, and many recommendations are given

    Forecasting global stock market implied volatility indices

    Get PDF
    This study compares parametric and non-parametric techniques in terms of their forecasting power on implied volatility indices. We extend our comparisons using combined and model-averaging models. The forecasting models are applied on eight implied volatility indices of the most important stock market indices. We provide evidence that the non-parametric models of Singular Spectrum Analysis combined with Holt-Winters (SSA-HW) exhibit statistically superior predictive ability for the one and ten trading days ahead forecasting horizon. By contrast, the model-averaged forecasts based on both parametric (Autoregressive Integrated model) and non-parametric models (SSA-HW) are able to provide improved forecasts, particularly for the ten trading days ahead forecasting horizon. For robustness purposes, we build two trading strategies based on the aforementioned forecasts, which further confirm that the SSA-HW and the ARI-SSA-HW are able to generate significantly higher net daily returns in the out-of-sample period

    Forecasting global stock market implied volatility indices

    Get PDF
    This study compares parametric and non-parametric techniques in terms of their forecasting power on implied volatility indices. We extend our comparisons using combined and model-averaging models. The forecasting models are applied on eight implied volatility indices of the most important stock market indices. We provide evidence that the non-parametric models of Singular Spectrum Analysis combined with Holt-Winters (SSA-HW) exhibit statistically superior predictive ability for the one and ten trading days ahead forecasting horizon. By contrast, the model-averaged forecasts based on both parametric (Autoregressive Integrated model) and non-parametric models (SSA-HW) are able to provide improved forecasts, particularly for the ten trading days ahead forecasting horizon. For robustness purposes, we build two trading strategies based on the aforementioned forecasts, which further confirm that the SSA-HW and the ARI-SSA-HW are able to generate significantly higher net daily returns in the out-of-sample period
    • 

    corecore